

Proposed Residential Subdivision 18 Gosford Road, Wyee

> Prepared for Mrs June Waldon

Project 104136.01 November 2021

Document History

Document details

Project No.	104136.01	Document No.	R.001.Rev0
Document title	Report on Detailed Site Investigation (Contamination)		
	Proposed Residential Subdivision		
Site address	18 Gosford Road, Wyee		
Report prepared for	Mrs June Waldon		
File name	104136.01.R.001.Rev	0	

Document status and review

Status	Prepared by	Reviewed by	Date issued
Revision 0	Chamali Nagodavithane	Dean Woods	26 November 2021

Distribution of copies

Status	Electronic	Paper	Issued to
Revision 0	1	0	Chris Oliver, Optima Developments Pty Ltd

The undersigned, on behalf of Douglas Partners Pty Ltd, confirm that this document and all attached drawings, logs and test results have been checked and reviewed for errors, omissions and inaccuracies.

Signature		Date	
Author	hangeli Non	26 November 2021	
Reviewer	Jan Ward,	26 November 2021	

Douglas Partners Pty Ltd ABN 75 053 980 117 www.douglaspartners.com.au Unit 5, 3 Teamster Close Tuggerah NSW 2259 Phone (02) 4351 1422

Table of Contents

Page

1.	Introduction1			
2.	Proposed Development1			
3.	Backg	ground1		
4.	Scope	e of Work2		
5.	Site Ir	nformation3		
6.	Enviro	onmental Setting4		
7.	Site H	listory5		
	7.1	Historical Aerial Photography5		
	7.2	Public Registers and Planning Records7		
	7.3	Site History Integrity Assessment		
	7.4	Summary of Site History9		
8.	Site V	Valkover9		
9.	Prelim	ninary Conceptual Site Model11		
10.	Sampling and Analysis Quality Plan13			
	10.1	Data Quality Objectives13		
	10.2	Soil Sampling Rationale14		
	10.3 Analytical Rationale15			
11.	Site Assessment Criteria15			
12.	Results15			
	12.1	Sub-surface conditions15		
	12.2	Laboratory Analytical Results		
	12.3	Data Quality Assurance and Quality Control		
13.	Discussion			
14.	Conclusions and Recommendations19			
15.	References19			
16.	Limitations			

Appendix A: About this Report Drawing 1 Drawing 2

	Client-Supplied Plans
Appendix B:	Historical Aerial Photographs Extracted from DP (2020)
	EPA Searches
	Council Records
Appendix C:	Table C1: Summary of Laboratory Results
	ProUCL Output
Appendix D:	Borehole and Test Pit Logs
	Sampling Methods
	Soil Descriptions
	Symbols and Abbreviations
Appendix E:	Site Assessment Criteria
Appendix F:	Field Work Methodology
Appendix G:	Quality Assurance / Quality Control
Appendix H:	Data Quality Objectives
Appendix I:	Laboratory Certificates of Analysis and Chain-of-Custody Documentation

Report on Detailed Site Investigation (Contamination) Proposed Residential Subdivision 18 Gosford Road, Wyee

1. Introduction

Douglas Partners Pty Ltd (DP) was engaged by Optima Developments Pty Ltd on behalf of Mrs June Waldon to undertake this detailed site investigation for contamination (DSI) for a proposed residential subdivision at 18 Gosford Road, Wyee (the site as shown on Drawing 1, Appendix A). The investigation was undertaken with reference to DP's proposal 104136.01.P.001.Rev0, dated 22 September 2021.

DP has previously prepared a preliminary site investigation (contamination) (PSI) for the site (DP, 2020 – see Section 3 below). The current report incorporates the findings of DP (2020).

The objective of the DSI is to assess the potential for contamination at the site based on past and present land uses and to comment on the need for further investigation and/or management with regard to the proposed development. It is understood that the report will be used to support a development application for the proposed development. This report must be read in conjunction with all appendices including the notes provided in Appendix A.

The following key guidelines were consulted in the preparation of this report:

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013); and
- NSW EPA Guidelines for Consultants Reporting on Contaminated Land (NSW EPA, 2020).

2. Proposed Development

Based on concept plans, the proposed subdivision is understood to comprise 42 residential lots with associated roads and services. It is understood that all existing site structures will be demolished. A copy of the proposed concept plans is included in Appendix A.

3. Background

DP has previously prepared a PSI for the site, which involved the drilling of eight boreholes targeting the following identified potential areas of environment concern (PAEC): (1) Former structures / area of potential fill; (2) Former dam; (3) Former agricultural land use; and (4) Mounded area surrounding the residential structure. The PSI commented that the site is generally suitable for the proposed residential development, subject to the recommendations outlined in Section 14 of DP (2020), including undertaking of confirmatory investigations, as stated below:

• **Confirmatory Investigations:** Given the preliminary nature of the current PSI (completed for rezoning purposes), it is recommended that confirmatory investigations be completed as part of the subdivision development approval process. These investigations should aim to confirm the site's suitability for the proposed residential development from a site contamination standpoint.

The current DSI, therefore includes intrusive investigations and soil sampling targeting the following PAEC:

- Former structures / area of potential fill (PAEC 1);
- Former dam (PAEC 2); and
- Former agricultural land use (PAEC 3);

The approximate extent of the PAEC are shown on Drawing 1, Appendix A.

4. Scope of Work

DP carried out the following scope of works:

- Review of published geological, soil, topographic, hydrogeological and acid sulfate soil (ASS) risk maps;
- Review of the PSI (DP, 2020) and key site history information including:
 - o Available historical aerial photographs and aerial imagery obtained through Nearmap, included in DP (2020);
 - NSW EPA public registers for notices and licences issued under the Contaminated Land Management Act 1997 (CLM Act) and the Protection of the Environment Operations Act 1997 (PEOA Act); and
 - o Readily accessible council records
- A site walkover to observe the current land uses and assess the potential for contaminating activities;
- Excavation of twenty-two test pits (Pits 101 to 106 and Pits 110 to 125) using hand tools, terminating in natural soils, at depths of up to 0.7 m;
- Drilling of three boreholes (Bores 107 to 109) using a utility-mounted push-tube rig, terminating in natural soils, at depths of up to 2.2 m;
- Collection of soil samples from regular depth intervals based on field observation;
- Field testing of soil samples with a photo-ionisation detector (PID) to assess the likely presence of volatile organic compounds;
- Laboratory analysis of selected soil samples for a range of commonly encountered contaminants as identified in the conceptual site model (CSM refer to Section 9);
- Field sampling and laboratory analysis according to standard environmental protocols, including a Quality Assurance / Quality Control (QA/QC) plan, appropriate Chain of Custody procedures and in-house laboratory QA/QC testing; and
- Preparation of this report detailing the findings of the investigation including recommendations for further works.

5. Site Information

The key site information is presented below, and the site boundary is shown in Figure 1.

Site Address	18 Gosford Road, Wyee		
Legal Description	Lot 217, Deposited Plan 755242		
Area	Approximately 3.1 hectares (ha)		
Zoning	RU2 – Rural Landscape		
Local Council Area	Lake Macquarie City Council		
Current Use	Rural residential		
Surrounding Uses	North and east – Residential		
	South – Gosford Road and bushland beyond		
	West Duckland and a rail line further west		

• West - Bushland and a rail line further west

Figure 1: Site Location

Page 3 of 21

6. Environmental Setting

Regional Topography	Undulating low hills and rises, with local relief < 30 m, slope gradients <15%, broad crests and ridges, long gently inclined slopes and broad drainage lines.
Site Topography	The site lies at an elevation ranging from approximately 29 m to 41 m AHD, based on the survey plan (see Appendix A). Based on the site topography, the land slopes from the south-east to the north-west.
Soil Landscape	Reference to the <i>Gosford-Lake Macquarie 1:100 000 Soil Landscape</i> <i>Sheet</i> indicates the site is underlain by the Gorokan (erosional) soil landscape, characterised by lithic sandstones of the Tuggerah Formation. The soils vary from soloths, yellow podzolic soils, grey-brown podzolic soils and <i>gleyed</i> podzolic soils, and typically have very high erosion hazard, localised foundation hazard, seasonal waterlogging, are strongly acid with low fertility.
Geology	Reference to the <i>Gosford-Lake Macquarie 1:100 000 Geology Sheet</i> indicates that the site is underlain by the Tuggerah Formation of the Triassic period of the Mesozoic era, characterised by red, green and grey shale and quartz-lithic sandstone.
Acid Sulfate Soils	Reference to ASS risk maps indicates the site and areas within 500 m of the site are not mapped within an area of ASS occurrence. Furthermore, given the site's elevation (i.e. > 5 m AHD), and given the site is underlain by an erosional soil landscape, assessment of ASS was not considered to be warranted.
Surface Water	A tributary of Spring Creek is mapped approximately 350 m south of the site, and Mannering Creek is mapped approximately 850 m north of the site. Based on the site topography, surface water is anticipated to flow to the north-west, and then to the north towards Mannering Creek.
Groundwater	 Based on the site topography, groundwater is anticipated to flow to the north-west, and then to the north towards Mannering Creek. A search of the publicly available registered groundwater bore database on 19 November 2021 indicated that there was one registered groundwater bore within approximately 500 m of the site. The bore, identified as GW064662, is located approximately 250 m east and is generally across gradient or upgradient of the site. Review of the records indicate that the bore is used for domestic purposes.

7. Site History

7.1 Historical Aerial Photography

Historical aerial photographs from 1954 to 2018 obtained from public databases and Nearmap were reviewed as part of DP (2020) to identify possible former land uses and hence the potential for contaminating activities to have impacted the site. The aerial photographs and an approximate site boundary, extracted from DP (2020) are presented in Appendix B. It is noted that data obtained from aerial photos was limited due to the relatively small scale and poor resolutions. A summary of the aerial photograph review is given in Table 1 below.

Table 1: Summary of Historical Aerial Photographs

Year	Site	Surrounding Land Use	
1954	The aerial photograph is of a small scale and resolution. It appears that most of the site has been cleared and there appears to be a structure within the central portion of the site.	Gosford Road and the rail line can be seen south and west of the site, respectively. The surrounding land use appears to be predominantly bushland.	
1965	The aerial photograph is of a higher resolution. The site comprises predominately cleared land with trees / shrubs along the perimeter of the site. A structure (likely rural residential house) with associated structures can be seen within the central portion of the site. An access path can be seen extending from Gosford Road to the residential house. There appears to be a minor ground disturbance (possible small farm dam) within the north western corner of the site and two minor ground disturbances (possible small farm dams), south west and south east of the house.	The surrounding land use is predominantly bushland, however it appears that a portion of the land north of the site has been cleared. West of the site, beyond the rail line, the land has been used for agricultural purposes.	
1976	The structures noted in the 1965 aerial image appears to have been demolished, and there appears to be a ground disturbance / possible mounded area within the central portion of the site, in the general vicinity of the former structures.	The surrounding land use appears much the same as in 1965. It is noted that the land east of the site has been cleared.	
1985	The site generally appears similar to 1976.	The land north and east of the site has been developed into residential land use.	
1996	The existing residential house and associated structures have been constructed. The northern portion of the site appears to be used for farming / agricultural purposes, evident by the greenhouses present within this area. An access path can be seen from the greenhouses to the shed (near the residential house). A large farm dam exists within the western portion of the site. There appears to be a garden bed / possible vegetable patch west of the residential house. Evidence of exposed surface soils suggests that much of the northern and central portions of the site may have been subject to some regrading (e.g. minor cutting, filling or disturbance).	There has been a general increase in residential development to the north and east.	

Year	Site	Surrounding Land Use
2001	The site appears much the same as in 1996, except that the ground disturbance / possible mounded area observed since 1976 is no longer visible. Trees / shrubs can be seen within this area.	The surrounding land use appears much the same as in 1996.
2010	The greenhouses are no longer present, and the access path can no longer be seen. The vegetable patch west of the residential house appears to have been cleared.	There has been an increase in residential land use to the north, east and west.
January 2018	The site appears much the same as in 2010.	The surrounding land use appears much the same as in 2010.
April 2018	The farm dam has been filled and there appears to be a stockpile of vegetation matter north of the filled dam. It is inferred that the stockpile originated from the clearing of trees / vegetation surrounding the former farm dam.	The surrounding land use appears much the same as in January 2018.
2021	The site appears much the same as in April 2018.	The surrounding land use appears much the same as in April 2018.

7.2 Public Registers and Planning Records

The EPA maintains a public database of contaminated sites under Section 58 of the CLM Act. The notices relate to investigation and / or remediation of site contamination considered to be significantly contaminated under the definition in the CLM Act.

A site will appear on the Contaminated Land: Record of Notices if the site has been issued a regulatory notice by the EPA. Sites appearing in the List of NSW Contaminated Sites Notified to the EPA indicate that the site is considered to be contaminated by the notifier and warrant reporting to the EPA. However, the contamination may or may not be significant enough to warrant regulation and is subject to further review by the EPA. The NSW EPA also issues environmental protection licenses under Section 308 of the POEO Act.

A summary of the EPA and Council records is presented below and the search results are included in Appendix B.

EPA Notices available under Section 58 of the Contaminated Lands Management Act (CLM Act)	There were no records of notices for the site or adjacent sites.	
Database searched 22 November 2021		
Sites notified to EPA under Section 60 of the CLM Act	The site and adjacent sites were not listed as a notified contaminated site.	
Database searched 22 November 2021		
Licences listed under Section 308 of the Protection of the Environment Operations Act 1997 (POEO Act)	No Licences relevant to the site or immediately adjacent properties. It is noted a licence was previously issued to Flyash Australia Pty Ltd at the Wyee Transfer Station located along Gorokan Road, Wyee (immediately west of the rail line) for 'cement or lime handling', which	
	had since been surrendered.	
Council Records (accessed 22 November 2021)	 The following building / development applications were found relating to the site: RZ – 7 / 2021 – Rezoning proposal DA-770/1992 – Rural Dwelling (approved in 1992); ZBA – 182 / 1994 – Farm Machinery Shed (approved in 1994); ZBA – 3339/1993 – Twelve Proposed Greenhouse Igloos (approved in 1993); ZBA – 2899 / 1993 – In-ground Concrete Pool (approved in 1993); and ZBA – 3585 / 1992 – Proposed Brick Veneer / Hardiplank & Tile Residence (approved in 1992) 	

7.3 Site History Integrity Assessment

The information used to establish the history of the site was obtained from reliable sources including the EPA and government / local government websites. It should be noted that the aerial photographs are only available for certain years / intervals, therefore some data gaps exist in the information from this source. Furthermore, the observed site features are open to different interpretations and can be affected by the time of day and/or year at which they were taken, as well as specific events, such as flooding. Care has been taken to consider different possible interpretations of aerial photographs and to consider them in conjunction with other lines of evidence.

7.4 Summary of Site History

The site history information suggests that the site has been rural residential land use since at least 1965 (likely prior to 1954). It appears that the original structures within the central portion of the site were demolished sometime between 1965 to 1976. Based on the council records and aerial photographs, it is inferred that the existing residential house was likely constructed sometime between 1992 to 1996, and the site was likely used for agricultural land use sometime between 1993 to 2010. The surrounding land uses comprised bushland / cleared land up until at least 1976, and from 1985 to present, there was an increase in residential land uses.

The search of the EPA and Council records did not identify any significant findings relating to contamination of the site.

8. Site Walkover

A site walkover was undertaken by an environmental engineer on 13 October 2021. The site conditions were observed to be generally similar to the conditions observed in September 2020 during the PSI field work (refer to Section 7 of DP (2020)).

No fragments of asbestos containing material were observed on the ground surface during the walkover. However, it should be noted that most of the site was grass covered, therefore preventing adequate visual inspection of the soil surface in most areas. The general site topography was consistent with that described in Section 6, with the land generally sloping toward the north-west.

General site photographs of the PAEC taken as part of the current investigation are shown in Figures 2 to 5 below.

Figure 2: PAEC 1 - Former structures / potential fill. Photo taken 13 October 2021

Figure 3: PAEC 2 – Former dam. Photo taken 13 October 2021.

Figure 4: Close-up of former dam area. Photo taken 13 October 2021.

Figure 5: PAEC 3 - Former agricultural land use. Photo taken 13 October 2021.

9. Preliminary Conceptual Site Model

A conceptual site model (CSM) is a representation of site-related information regarding contamination sources, receptors and exposure pathways between those sources and receptors. The CSM provides the framework for identifying how the site became contaminated and how potential receptors may be exposed to contamination either in the present or the future i.e.: it enables an assessment of the potential source – pathway – receptor linkages (complete pathways).

Potential Sources

Based on the current investigation, the following potential sources of contamination and associated contaminants of potential concern (COPC) have been identified.

- S1: Fill: Associated with site regrading, construction/demolition of former buildings, filling of the former dam.
 - o COPC include metals, total recoverable hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene (BTEX), polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), organochlorine pesticides (OCP), organophosphate pesticides (OPP), and asbestos.
- S2: Former agricultural land use (greenhouses).
 - o COPC include primarily OCP, OPP, and metals, and also TRH, BTEX, PAH from potential fuel leaks associated with machinery sheds.
- S3: Hazardous building materials in existing structures.
 - o COPC include asbestos, synthetic mineral fibres (SMF), lead (in paint) and PCB.

Based on the surrounding residential land use, the risk of contamination from off-site sources to the site is considered to be relatively low.

Potential Receptors

The following potential human receptors have been identified:

- R1: Current users [residential land use];
- R2: Construction and maintenance workers;
- R3: End users [residential land use]; and
- R4: Adjacent site users [residential land use].

The following potential environmental receptors have been identified:

- R5: Surface water [Mannering Creek];
- R6: Groundwater; and
- R7: Terrestrial ecology.

Potential Pathways

The following potential pathways have been identified:

- P1: Ingestion and dermal contact;
- P2: Inhalation of fibres / dust and/or vapours;
- P3: Surface water run-off;
- P4: Lateral migration of groundwater providing base flow to water bodies;
- P5: Leaching of contaminants and vertical migration into groundwater; and
- P6: Inhalation, ingestion and absorption.

Summary of Potentially Complete Exposure Pathways

A 'source–pathway–receptor' approach has been used to assess the potential risks of harm being caused to human or environmental receptors from contamination sources on or in the vicinity of the site, via exposure pathways (potential complete pathways). The possible pathways between the above sources (S1 to S3) and receptors (R1 to R7) are provided in below Table 2.

Source and COPC	Transport Pathway	Receptor	Risk Management Action Recommended
S1: Fill - metals, TRH,	P1 – Ingestion and dermal contact P2 – Inhalation of fibres/ dust and/or vapours P2 – Inhalation of fibres/	R1 – Current Users R2 – Construction and maintenance workers R3 – End users R4 – Adjacent site users	An intrusive investigation of site soils and associated contamination sampling (with respect to the sampling density as per NSW EPA, 1995) is recommended to assess possible contamination
OCP, OPP and asbestos	dust and/or vapours		
S2:Former agricultural land-use - OCP, OPP, metals, TRH, BTEX, PAH	P3 – Surface water run- off P4 – Lateral migration of groundwater	R5 – Surface water	
	P5 – Leaching of contaminants and vertical migration into groundwater	R6 – Groundwater	issues.
	P6 – Inhalation, ingestion and absorption	R7 – Terrestrial ecology	
S3: Hazardous building materials in existing structures	P1 – Ingestion and dermal contact P2 – Inhalation of fibres/ dust and/or vapours	R1 – Current Users R2 – Construction and maintenance workers R3 – End users	A hazardous materials survey should be conducted prior to demolition Areas beneath the
	P2 – Inhalation of fibres/ dust and/or vapours	R4 – Adjacent site users	buildings should be assessed post-demolition.

Table 2: Summary of Potentially Complete Exposure Pathways

10. Sampling and Analysis Quality Plan

10.1 Data Quality Objectives

The DSI was devised with reference to the seven-step data quality objective process which is provided in Appendix B Schedule B2, NEPC (2013). The data quality objective process is outlined in Appendix H.

10.2 Soil Sampling Rationale

The current DSI targeted the PAEC identified in the PSI. Table A of NSW EPA (1995) recommends a minimum sampling density for site characterisation based on the detection of circular hot spots using a systemic grid sampling pattern. A summary of the area of each PAEC and the sampling density adopted is presented in Table 3.

Table 3: Summar	y of Sampling Density	Adopted for PAEC
-----------------	-----------------------	------------------

PAEC	Approximate Area	Number of recommended sampling points (NSW EPA (1995))	Number of Sampling Locations (PSI)	Number of Sampling Locations (Current DSI)			
PAEC 1 (Former structures / area of potential fill)	2,000 m ²	7	1	6			
PAEC 2 (Former dam)	500 m ²	5	2	3			
PAEC 3 (Former agricultural land use)	9,000 m²	20	4	16			

A summary of the targeted sampling locations is presented in Table 4 below. Borehole and test pit locations are shown on Drawing 1 in Appendix A.

Investigation	Borehole / Test Pit ID	Location Target	Identified From
PSI	Bore 1 to Bore 4	PAEC 3 (Former agricultural	1006 Aprial Photograph
Current DSI	Pits 110 to 125	land use)	1996 Aenai Photograph
PSI	Bores 5 and 6	DAEC 2 (Formar dam)	1996 to 2018 Aerial
Current DSI	Bores 107 to 109	PAEC 2 (Former dam)	Photographs
PSI	Bore 7	PAEC 1 (Former structures /	1976 to 1996 Aerial
Current DSI	Pits 101 to 106	area of potential fill)	Photographs
PSI Bore 8 Mounded area surrounding residential structure		Walkover (DP, 2020)	

Table 4:	Summary of	of Targeted	Sampling	Locations
----------	------------	-------------	----------	-----------

Soil samples were collected from each borehole / test pit at depths of approximately 0.1 m, 0.5 m, and every 0.5 m thereafter, and changes in lithology or signs of contamination. The general sampling methods are described in the field work methodology, included in Appendix F.

10.3 Analytical Rationale

Based on the site observations and the location of soil samples within the subsoil strata (see Section 12.1), selected samples were analysed for the primary contaminants of concern as identified in Section 9. The analytical scheme was designed to obtain an indication of the potential presence and possible distribution of identified COPC, as outlined below:

- PAEC 1 (Former structures / area of potential fill) surface samples were analysed for a contaminant suite comprising metals, OCP, OPP and asbestos (500 ml samples). At locations where anthropogenic inclusions were observed in the fill (see Section 12.1), the surface sample was also analysed for TRH, BTEX, PAH and PCB;
- PAEC 2 (Former dam) samples from depths of up to 1.0 m were analysed for a contaminant suite including metals, TRH, BTEX, PAH, PCB, OCP and OPP; and
- PAEC 3 (Former agricultural land use) surface samples were analysed for a contaminant suite comprising metals, OCP and OPP. At locations where anthropogenic inclusions were observed in the fill (see Section 12.1), the surface sample was also analysed for TRH, BTEX, PAH and PCB.

11.Site Assessment Criteria

The Site Assessment Criteria (SAC) applied in the current investigation is informed by the CSM, which identified human and ecological receptors to potential contamination on the site, as well as consideration of the proposed development (i.e. residential subdivision). The laboratory analytical results have been assessed against the investigation and screening levels in Schedule B1 of NEPC (2013).

The investigation and screening levels applied in the current investigation comprise levels adopted for a generic residential land use scenario. The derivation of the SAC is included in Appendix E and the adopted SAC are listed on the summary analytical results tables in Appendix C.

12.Results

12.1 Sub-surface conditions

Details of the subsurface conditions encountered are given in the borehole and test pit logs in Appendix D, together with notes defining classification methods and descriptive terms. A summary of the ground profile encountered is given below. It should be noted that the sub-surface conditions encountered during the PSI (DP, 2020) have been incorporated into the below summary:

- FILL: Typically sand or clay fill was encountered at certain borehole or test pit locations as outlined below:
 - o Silty sand fill to depths of up to 0.4 m was encountered in Pits 101 to 103 and 106 excavated in the area of the former structures / area of potential fill (PAEC 1). Anthropogenic inclusions including trace metal, brick, glass and particle board were observed in the test pits;
 - o Sandy clay or gravelly sandy clay fill to depths of up to 2.9 m was encountered in Bores 5, 6, and Bores 107 to 109 drilled in the former dam (PAEC 2);
 - Sand fill (varying from sand, silty sand and gravelly clayey sand) to depths of up to 0.3 m was encountered in Bore 1 and Pits 111 to 113 and Pit 121 drilled / excavated in the former agricultural land use area (PAEC 3). Anthropogenic inclusions including trace glass and plastic sheeting were encountered in Pits 112 and 121; and
 - o Clayey sand fill, with trace concrete and brick at depths of 0.6 m was encountered in Bore 8, positioned within the mounded area surrounding the house.
- SAND: Typically grey-brown or brown silty sand was encountered in Bores 2 to 4, 7, Pits 104, 105, 110, 114 to 118, 120, 122 to 125 from the ground surface, and in Bore 1 underlying fill, to depths of up to 0.5 m; underlain by sand (possible fill) in Pit 123;
- CLAY or SAND (residual): Typically yellow-brown, orange/red-brown and / or grey-brown gravelly sand, clayey sand, sandy clay or clay, as outlined below:
 - o Gravelly sand was encountered in Bore 1 from depths of 0.5 m to 1.0 m, and in Bore 2 from depths of 0.2 m to 0.35 m;
 - o Clayey sand was encountered in Pits 101, 103 to 106 and 110 underlying fill or silty sand, to test pit termination at depths of up to 0.7 m,
 - o Sandy clay or gravelly sandy clay was encountered in Bores 2 to 4, 7, 8, 108 and 109; and Pits 102, and 111 to 125 to borehole / test pit termination at depths of up to 2.2 m; and
 - o Clay was encountered in Bore 5, 6 and 107 (drilled in the former dam area) underlying fill to borehole termination at depths of up to 3.2 m. Bore 6 refused on weathered sandstone at depths of approximately 2.5 m.

No free groundwater was observed during drilling or excavation. It should be noted that groundwater levels are affected by climatic conditions and soil permeability and will therefore vary with time.

The PID readings were all < 1 ppm indicating a low potential for gross contamination from volatile contaminants to be present in the soil. There were no obvious indicators of contamination (such as staining or odours) within the bores or test pits, with the exception of the trace anthropogenic inclusions noted above.

12.2 Laboratory Analytical Results

The laboratory results are summarised in Table C1, Appendix C, together with the adopted SAC. Laboratory certificates of analysis together with the chain of custody documentation are provided in Appendix I. A summary of the results is provided below:

PSI (DP (2020))

- Concentrations of TRH, BTEX, PAH, OCP, OPP and PCB were below the PQL and the SAC in all soil samples;
- Concentrations of metals were above the PQL in some samples, but below the SAC; and
- No asbestos was detected in the soil samples analysed for asbestos at the reporting limit of 0.1 g/kg.

Current DSI

- Concentrations of TRH, BTEX, PAH, OCP, OPP and PCB were below the PQL and the SAC in all soil samples;
- The following results were obtained for metals:
 - Concentrations of lead in sample 106/0.1 (710 mg/kg) and the corresponding QC sample (QA3 905 mg/kg) exceeded the health-based SAC of 300 mg/kg. Given the concentration of lead is over 2.5 times the SAC, Pit 106 is considered to be a lead contamination hotspot;
 - Concentrations of zinc in sample 106/0.1 (370 mg/kg) and the corresponding QC sample (QA3 437 mg/kg) exceeded the ecological SAC of 320 mg/kg;

Given the concentration of zinc is less than 2.5 times the SAC, the 95% UCL was considered applicable to the dataset. Two different datasets were compared: one dataset comprising surface silty sand fill or gravelly clayey sand fill (i.e. Pit 113/0.1); and a larger dataset comprising surface silty sand fill or silty sand topsoil. The calculated 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL) ranged from 116 to 223 mg/kg, both values which are less than the ecological SAC, and the standard deviation was less than 50% of the SAC. Therefore, the zinc exceedance is not considered to warrant further investigation or management. The 95% UCL was calculated using USEPA ProUCL 5.1 and the output is included in Appendix C.

- o Concentrations of other metals were below the PQL and / or SAC.
- The following results were obtained for asbestos:
 - o Chrysotile and amosite asbestos were detected in fibre cement material > 7mm in sample 106/0.1, but the concentrations of FA and AF in soil were below the PQL;
 - o Chrysotile asbestos was detected in fibre cement material > 7mm in sample 101/0.1, but the concentrations of FA and AF in soil were below the PQL;
 - o Chrysotile and amosite asbestos were detected in loose fibre bundles in sample 103/0-0.1, but the concentrations of FA and AF in soil were below the PQL and SAC; and
 - o No asbestos was detected in the other soil samples analysed for asbestos, and the concentrations of FA and AF were below the PQL and SAC.

DP notes that the SAC states no visible asbestos in surface soils. Given that asbestos was detected in fibre cement material > 7mm at Pits 101 and 106, the results are considered to be an exceedance of the health-based SAC.

12.3 Data Quality Assurance and Quality Control

The data quality assurance and quality control (QA/QC) results are included in Appendix G. Based on the results of the field QA and field and laboratory QC, and evaluation against the data quality indicators (DQI) it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

13. Discussion

The current DSI comprised a review of the PSI (DP, 2020), limited review of site history information, a walkover, and intrusive soil sampling and laboratory testing targeting the following PAEC: (1) former structures / area of potential fill (PAEC 1); (2) former dam (PAEC 2); and (3) former agricultural land use (PAEC 3). The PSI field and laboratory results were incorporated into the current report.

The search of the EPA and Council records did not identify any significant findings relating to contamination of the site. Based on the surrounding residential land use, the risk of contamination from off-site sources to the site is considered to be relatively low.

Fill to depths of up to 2.9 m was encountered in PAEC 2, and relatively shallow fill to depths of up to 0.4 m was encountered in PAEC 1 and PAEC 3. Anthropogenic inclusions including trace glass and plastic sheeting were encountered in Pits 112 and 121 (PAEC 3), and trace metal, brick, glass and particle board were observed in Pits 101 to 103 and 106 (PAEC 1).

The soil laboratory results indicated the following:

- PAEC 2 and PAEC 3: Concentrations of contaminants were below the SAC; and
- PAEC 1: Concentrations of lead and zinc in sample 106/0.1 exceeded the health-based, and ecological SAC, respectively, however the zinc exceedance was not considered to warrant further investigation or management, based on calculation of the 95% UCL. Asbestos was detected in surface samples at Pits 101, 103 and 106. Given that asbestos was detected in fibre cement material > 7mm at Pits 101 and 106, the results are considered to be an exceedance of the health-based SAC.

DP considers that the concentration of lead above the SAC, and the presence of asbestos in PAEC 1 may be associated with the fill in this area, extending to depths of approximately 0.4 m. Based on the field and laboratory results, further investigation is considered to be warranted in PAEC 1 to delineate the lateral and vertical extent of contamination.

14. Conclusions and Recommendations

Based on the results of the DSI, it is considered that the site can be made suitable for the proposed residential subdivision (from a site contamination standpoint), subject to the following recommendations:

- **PAEC 1**: Further investigation and delineation of the extent of contamination at the locations identified on Drawing 2, Appendix A. DP considers that the appropriate remediation options should be considered with respect to the proposed development plans. The remediation/management works are likely to involve a combination of the following options:
 - **Option 1**: Waste Classification for off-site disposal with reference to NSW EPA (2014). This approach may be preferred should the area be subject to excavation as part of the proposed development. A clearance assessment should be conducted by an appropriately qualified environmental consultant following the removal of fill soils; or
 - **Option 2**: Capping of impacted fill and implementation of an environmental management plan (EMP): With this option, ACM impacted fill would remain on-site, but would be "capped" to eliminate the source receptor pathway. This option may be appropriate for areas where construction of a road or concrete slab (i.e. acting as a capping layer) is proposed but would not generally be suitable for areas comprising private dwellings. It should be noted that further soil testing will be required to assess whether the capping option will be a suitable approach. Furthermore, an EMP will need to be implemented, and notification on the Section 10.7 Certificate will be required; and / or
 - **Option 3**: If fill is to be retained on site, or areas where exposed ground surface will remain (i.e. landscaped areas / garden beds), DP recommend undertaking a detailed asbestos investigation, at double density with reference to WA DoH (2021).
- Remainder of the site: Implementation of an unexpected finds protocol (UFP), to establish a strategy / management procedure to be followed during construction works, should unexpected finds of contamination be uncovered; and
- Existing Structures: A pre-demolition hazardous building material survey in accordance with SafeWork NSW requirements is recommended to be conducted by an appropriately qualified occupation hygienist prior to the demolition of the existing structures. All demolition work should be undertaken by a licenced demolition contractor and a clearance certificate provided by an occupational hygienist for the ground surface post demolition.

15. References

DP. (2020). Report on Preliminary Site Investigation (Contamination), Proposed Residential Subdivision, 18 Gosford Road, Wyee. Ref: 104136.00.R.001.Rev0 dated 23 November 2020: Douglas Partners Pty Ltd .

NEPC. (2013). National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]. Australian Government Publishing Services Canberra: National Environment Protection Council.

NSW EPA. (1995). *Contaminated Sites, Sampling Design Guidelines*. NSW Environment Protection Authority.

NSW EPA. (2014). *Waste Classification Guidelines, Part 1: Classifying Waste.* NSW Environment Protection Authority.

NSW EPA. (2020). *Guidelines for Consultants Reporting on Contaminated Land.* Contaminated Land Guidelines: NSW Environment Protection Authority.

WA DoH. (2021). Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites in Western Australia. WA Department of Health.

16. Limitations

Douglas Partners (DP) has prepared this report for this project at 18 Gosford Road, Wyee in accordance with DP's proposal 104136.01.P.001.Rev0 dated 22 September 2021 and acceptance received from June Waldon dated 1 October 2021. The work was carried out under DP's Conditions of Engagement. This report is provided for the exclusive use of Mrs June Waldon and Optima Developments Pty Ltd for this project only and for the purposes as described in the report. It should not be used by or relied upon for other projects or purposes on the same or other site or by a third party. Any party so relying upon this report beyond its exclusive use and purpose as stated above, and without the express written consent of DP, does so entirely at its own risk and without recourse to DP for any loss or damage. In preparing this report DP has necessarily relied upon information provided by the client and/or their agents.

The results provided in the report are indicative of the sub-surface conditions on the site only at the specific sampling and/or testing locations, and then only to the depths investigated and at the time the work was carried out. Sub-surface conditions can change abruptly due to variable geological processes and also as a result of human influences. Such changes may occur after DP's field testing has been completed.

DP's advice is based upon the conditions encountered during this investigation. The accuracy of the advice provided by DP in this report may be affected by undetected variations in ground conditions across the site between and beyond the sampling and/or testing locations. The advice may also be limited by budget constraints imposed by others or by site accessibility.

Asbestos has been detected by laboratory analysis in PAEC 1, as documented in this report. Although the sampling plan adopted for this investigation is considered appropriate to achieve the stated project objectives, there are necessarily parts of the site that have not been sampled and analysed. This is either due to undetected variations in ground conditions or to budget constraints (as discussed above), or to parts of the site being inaccessible and not available for inspection/sampling, or to vegetation preventing visual inspection and reasonable access. It is therefore considered possible that HBM, including asbestos, may be present in unobserved or untested parts of the site, between and beyond sampling locations, and hence no warranty can be given that asbestos is not present.

The assessment of atypical safety hazards arising from this advice is restricted to the environmental components set out in this report and based on known project conditions and stated design advice and assumptions. While some recommendations for safe controls may be provided, detailed 'safety in design' assessment is outside the current scope of this report and requires additional project data and assessment.

This report must be read in conjunction with all of the attached and should be kept in its entirety without separation of individual pages or sections. DP cannot be held responsible for interpretations or conclusions made by others unless they are supported by an expressed statement, interpretation, outcome or conclusion stated in this report.

This report, or sections from this report, should not be used as part of a specification for a project, without review and agreement by DP. This is because this report has been written as advice and opinion rather than instructions for construction.

Douglas Partners Pty Ltd

Appendix A

About This Report

Drawing 1

Drawing 2

Client-Supplied Plans

Introduction

These notes have been provided to amplify DP's report in regard to classification methods, field procedures and the comments section. Not all are necessarily relevant to all reports.

DP's reports are based on information gained from limited subsurface excavations and sampling, supplemented by knowledge of local geology and experience. For this reason, they must be regarded as interpretive rather than factual documents, limited to some extent by the scope of information on which they rely.

Copyright

This report is the property of Douglas Partners Pty Ltd. The report may only be used for the purpose for which it was commissioned and in accordance with the Conditions of Engagement for the commission supplied at the time of proposal. Unauthorised use of this report in any form whatsoever is prohibited.

Borehole and Test Pit Logs

The borehole and test pit logs presented in this report are an engineering and/or geological interpretation of the subsurface conditions, and their reliability will depend to some extent on frequency of sampling and the method of drilling or excavation. Ideally, continuous undisturbed sampling or core drilling will provide the most reliable assessment, but this is not always practicable or possible to justify on economic grounds. In any case the boreholes and test pits represent only a very small sample of the total subsurface profile.

Interpretation of the information and its application to design and construction should therefore take into account the spacing of boreholes or pits, the frequency of sampling, and the possibility of other than 'straight line' variations between the test locations.

Groundwater

Where groundwater levels are measured in boreholes there are several potential problems, namely:

 In low permeability soils groundwater may enter the hole very slowly or perhaps not at all during the time the hole is left open;

- A localised, perched water table may lead to an erroneous indication of the true water table;
- Water table levels will vary from time to time with seasons or recent weather changes. They may not be the same at the time of construction as are indicated in the report; and
- The use of water or mud as a drilling fluid will mask any groundwater inflow. Water has to be blown out of the hole and drilling mud must first be washed out of the hole if water measurements are to be made.

More reliable measurements can be made by installing standpipes which are read at intervals over several days, or perhaps weeks for low permeability soils. Piezometers, sealed in a particular stratum, may be advisable in low permeability soils or where there may be interference from a perched water table.

Reports

The report has been prepared by qualified personnel, is based on the information obtained from field and laboratory testing, and has been undertaken to current engineering standards of interpretation and analysis. Where the report has been prepared for a specific design proposal, the information and interpretation may not be relevant if the design proposal is changed. If this happens, DP will be pleased to review the report and the sufficiency of the investigation work.

Every care is taken with the report as it relates to interpretation of subsurface conditions, discussion of geotechnical and environmental aspects, and recommendations or suggestions for design and construction. However, DP cannot always anticipate or assume responsibility for:

- Unexpected variations in ground conditions. The potential for this will depend partly on borehole or pit spacing and sampling frequency;
- Changes in policy or interpretations of policy by statutory authorities; or
- The actions of contractors responding to commercial pressures.

If these occur, DP will be pleased to assist with investigations or advice to resolve the matter.

About this Report

Site Anomalies

In the event that conditions encountered on site during construction appear to vary from those which were expected from the information contained in the report, DP requests that it be immediately notified. Most problems are much more readily resolved when conditions are exposed rather than at some later stage, well after the event.

Information for Contractual Purposes

Where information obtained from this report is provided for tendering purposes, it is recommended that all information, including the written report and discussion, be made available. In circumstances where the discussion or comments section is not relevant to the contractual situation, it may be appropriate to prepare a specially edited document. DP would be pleased to assist in this regard and/or to make additional report copies available for contract purposes at a nominal charge.

Site Inspection

The company will always be pleased to provide engineering inspection services for geotechnical and environmental aspects of work to which this report is related. This could range from a site visit to confirm that conditions exposed are as expected, to full time engineering presence on site.

							8°	46'		1
							62.28			
			50"							
		38	DADI							10
	246°	5. PED	Ro.	7.00	8°	46'	15"			1.105
	54	POSEL	NDE)	1.28	5	15.40	17.035	5. X6. - 55. 51,		က်
		PRO. (10	APZ - 50 17	<u>4</u> 0						
		28								
			15		⁵⁵ "	24 ដូ	2 25			
	2,46°	14	\backslash	23	5°53' 29.1	492.6m ²	<u>ရ</u> 604.2m ²	105		
	345		23	620.5m²	27	č		25.		
0145	11.60	\backslash								14
340° 42	\backslash		 ଜ୍ 483.8m²		5					
35		\2 21 [∞]	5	207 07		14	21.035 188°46'15"			
5.4		نگرون 450.1m ²					35.035			
\backslash	20	: 15 15 15 15		166°16'19 15.225	102	S	26	_		
\backslash	702.8m ²	\backslash	1:55		2.25 7°07	v	450.1m²	14		14
\r2			1670 31		26,1	١				
1.20	<u>B</u>	\ 14 50				\	<u>188°46'15"</u> 32.15			
Ŏ, Ň		38	100°	16			07			
\sim	19.4 16	o [°] 33.41	· 66/131	1007 6m ²		14		14		15" 14
- Th		19	$\mathbf{\lambda}$		ני		450. Im-			
120		549 9m ²		,	~	-	188°46'15"			
10F		040.011					32.15		D	
	R	3360	15	Sil CE PI	2	4	28	4	ð	4
	K		18	100.	4	~	450m²	~	Ж _Ш	-
λ			10				188°46'15"		D	
	_	Y	402.011	1298			32.15	46'	SE 16 ∕	46'
104 1			336 2505	°.\			29		Õ	
		51	17	38	C4 /	14	450m ²	14	Ю	14
	\land		539.9m²		N Q Q		400m		Ř	
		\backslash	000.011				<u>188°46'15"</u> 32,15		ш.	
	*. 22	\?	29.4	120"			00			
1		65	166° 4	346° 47'20 346° 47'20		14	30	38°		78° 14
8	10,			35.0	46'		450m²			~
7.7m²			1:21	15	3.85		8°46'15"			
~ 46115			R C R	538.9m ²	Ň		32.15			
33334.903		\backslash	R 00				31			
	7	CIR F		8°46'15"		14	450m ²	14		14
	767.5m²	A 6.77	4115 ¹ 4115 ¹	28.735						
1		10 2 00	R 2 CH 4 A 4.				<u> </u>			
		5 <mark>1</mark>	5	14	5.86		22			
		6.6	15" 1.45	450.2m ²	~	4.71	32	4.71		4.71
	<u> </u>		~	8°46'15"		7	472.8m²	7		7
		46'	20	28.385			<u>188°46</u> '15"			
			46		38°	}	32.15			
91°5	6	<u>8°</u>	38	13	0.					
	683.6m ²	27	08	616.5m ²	22	0	33	15		15
-						~	602.8m²			
		is in	-332 M					5 5		
	26	507×82	<i>R</i> , 1055	24.385			28.15	1000 AD		- F6. 55
18	38°			46'					15"	

PROPOSED SUBDIVISION

CL	LIENT: J. W	/ALDON	LOT No.	217		
			SECTION	-		
R	S# 149418	149418_JC_200907_DE	PLAN No.	DP 755242	AHD	
รเ	JRVEYED BY:	DATE OF SURVEY:	SUBURB	WYEE		
	J. CLEASBY	07.09.20	LGA	LAKE MACQUARIE	PM 23846	
DF			PARISH	MORISSET	R.L.: 07.74.7	Int
	3 DR I AN I		COUNTY	NORTHUMBERLAND	37.717	Vic

PLAN SHOWING PROPOSED SUBDIVISION OF LOT 217 IN DP 755242 "No.18" GOSFORD ROAD WYEE

SHEET No.
2
No. of SHEETS:
4
REFERENCE No:
S# 149418
REV:
-)

		0	6	12)	
		Ľ	—Ĭ—	. ï		
EPORT WITH REFERENCE: S#149418			REDU		ION	RP
UR PROSUB 18 GOSFORD						

Appendix B

Historical Aerial Photographs Extracted from DP (2020)

EPA Searches

Council Records

Photo 6 - 2001

Historical Aerial Photographs	PROJECT:	104136.00
Preliminary Site Investigation	PLATE No:	3
18 Gosford Road, Wyee	REV:	0
CLIENT: June Waldon	DATE:	1-Oct-20

Photo 7 - 2010

Photo 8 - January 2018

_			
	Historical Aerial Photographs	PROJECT:	104136.00
	Preliminary Site Investigation	PLATE No:	4
	18 Gosford Road, Wyee	REV:	0
	CLIENT: June Waldon	DATE:	1-Oct-20

Appendix B EPA Site Searches

ie ço	Your environment	Reporting and incidents	Licensing and regulation	Working together	About us
Public registers + POEO Public Register - Octaminated land rec notices About the record of n Las of notified sites Tips for searching Disclarer Pasticide licences Radiation licences	d d d d d d d d d d d d d d d d d d d d	seases <u>Contaminated and record of notices</u> escillars Suburk WHEE records no our database. It appear on the record it may still be affected by to may be present but the site has not been reg- memor Art 1907 or the Environmentally Hazardo by be regulating contamination at the site has not corparisons Art 1907 (PGED Act). on at the site may be being managed under the it- na about particular sites may be available from: bublic mobilities the provide automative of example, on a plannin tal Planning and Assessment Act. The accord and What's not in the record. However, and the site information at the site required by of powersen Arts and out and tarefully review the rid powerse information about sites required by Development Arts and be available from the say indepression 140 of the Environmental Planting action 140 of the Environmental Planting the site though and be available from the say lunder section 140 of the Environmental Planetin the site though and beautifue the finances.	Easerch contamination. For example: lated by the EPA under the Contaminated us Ohemicals Act 1065. a licence or notice under the Protection of the latenting process. of notices issued by the Iocal council under ; definition process. of notices issued by the Iocal council under ; he EPA under the Contaminated Land Manage the EPA under the Contaminated Land Manage the EPA under the Contaminated Land Manage in You should consider earching again using in You should consider earching again using and Assessment Act. In addition the EPA ma of the Environment Operations Act 1997. You it	Again) (Refine Search) Search TIP To sarch for a specific site, search by LAG (local poverment area) and portuly review all sites lated. 	

	A	в	L L	U	t	F	6
	Suburb	SiteName	Address	ContaminationActivityType	ManagementClass	Latitude	Longitude
1			· · · · · · · · · · · · · · · · · · ·	¥	¥	¥	¥
		Mobil Former Woy Woy Service Station			Contamination formerly regulated under		
105	WOY WOY	and adjacent land	177-181 Blackwall ROAD	Service Station	the CLM Act	-33.49254403	151.3270829
106	WOY WOY	Rogers Park	Dunban ROAD	Landfill	Regulation under CLM Act not required	-33.50009693	151.3181347
107	WALONG	Calter Service Station	50 Neeld (Newell Highway) STREET	Service Station	Regulation under CLM Act not required	-33 92665025	147 2446546
108	WYOMING	Caltex Service Station Wyoming	465 Pacific HIGHWAY	Service Station	Regulation under CLM Act not required	-33.40945391	151.3499812

Public registers POED Public Register Cleanes, applications and notices search Penalty notices search Penalty notices search Enforceable undertakings search Enforceable undertakings media releases Exemptions and approvals search Prosecutions or civil proceedings search Terms of use: POED public register Licensing FAGs List of licenses List EFA	Home Publ Search Your search returned 17 1 Execut to exe	is registers POED Public Register Loano results for General Search with the following o Suburb - Wyee results	es, applications and notices search				
 POEO Public Register Licences, applications and notoes asarch Pensity notoes asarch Enforceable undertakings search Enforceable undertakings midia relateases Exemptions and approvals search Protexcutors or will proceedings search Terms of use: POEO public register Licensing FAQs List of licences Unioneand premises regulated by the EPA 	Search Your search returned 17	results for: General Search with the following o Suburb - Wyee results	iteria				
Licences, applications and notices search Penalty notices search Enforceable undertakings search Enforceable undertakings media releases Exemptions and approvals search Prosecutions or civil proceedings search Terms of use: POED public register Licensing FAQs List of licences Unlicences premises regulated by the EPA	Your search returned 17 1 Export to exp	for: General Search with the following o Suburb - Wyee results	riteria				
Pearby notices search Enforceable undertakings search Enforceable undertakings media releases Exemptions and approvals search Prosecutions or ovil proceedings search Tames of use. POEO public register Licensing FAQs List of licences Unificants premises regulated by the EPA.	Your search returned 17 (Export to exp	for: General Search with the following o Suburb - Wyee results	riteria				
Enforceable undertakings search Enforceable undertakings media releases Exemptions and approvals search Prosecutions or civil proceedings search Terms of use! FOEO public register Licensing FACs List of licences Unitoineed premises regulated by the EPA.	Your search returned 17 r	for: General Search with the following o Suburb - Wyee results	riteria				
search Enforceable undertakings media releases Exemptions and approvals search Prosecutions or civil proceedings search Terms of use: POED public register Licensing FAQs Lat of licences Unicensed premises regulated by the EPA	returned 17 r	Suburb - Wyee results					
Enforceable undertakings media releases Exemptions and approvals search Prosecutions or civil proceedings search Terms of use; POEO public register Losning FAQs List of licences Unlicences premises regulated by the EFA	returned 17	results					
Exemptions and approvals search Prosecutions or oivil proceedings search Terms of use: POED public register Licensing PACs List of licensed ymmisses regulated by the EPA	Export to ex						
search Proceedings or civil proceedings search Terms of use: POED public register Licensing FACs List of licences Unitionand premises regulated by the EPA		28	1 of 1 Pages			Search Again	
Prosecutions or ovial proceedings search Terms of use: POED public register Licensing FAQs List of licences Unicensed premises regulated by the EPA	Number	Name	Location	Туре	<u>Status</u>	Issued date	
Terms of use: POEO public register List of licences Unicensed premises regulated by the EPA	1023719	ARTHUR VATES & CO LIMITED	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	16 Dec 2002	
Licensing FAQs List of licences Unlicensed premises regulated by the EPA	<u>11470</u>	DULUXGROUP (AUSTRALIA) PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	POEO licence	Issued	02 Jul 2002	
List of licences Unlicensed premises regulated by the EPA	1100334	DULUXGROUP (AUSTRALIA) PTY LTD	2259 2259	s.58 Licence Variation	Issued	02 Heb 2010	
by the EPA	1520401	DULUXGROUP (AUSTRALIA) PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	18 Jun 2015	
Constaminated land report of	1532496	DULUXGROUP (AUSTRALIA) PTY LTD	34 WYEE ROAD, WYEE, NSW	s.58 Licence	Issued	22 Sep 2015	
notices	<u>1571174</u>	DULUXGROUP (AUSTRALIA) PTY LTD	2259 34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	08 Nov 2018	
Dangerous goods licences	1576540	DULUXGROUP (AUSTRALIA) PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence	Issued	05 Mar 2019	
Pesticide licences	1502	FLYASH AUSTRALIA PTY LIMITED	GOROKAN ROAD, WYEE, NSW 2259	POEO licence	Surrende	red 01 Nov 2000	
Radiation licences	1025766	FLYASH AUSTRALIA PTY LIMITED	GOROKAN ROAD, WYEE, NSW 2259	s.80 Surrender of a Licence	Issued	19 Mar 2003	
	1026565	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	10 Nov 2003	
	1034071	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	03 Feb 2004	
	1035824	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	08 Jul 2004	
	1040465	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	08 Oct 2004	
	1048909	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	23 Jun 2005	
	1055465	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	06 Mar 2006	
	1062026	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	12 Sep 2006	
	1099114	ORICA AUSTRALIA PTY LTD	34 WYEE ROAD, WYEE, NSW 2259	s.58 Licence Variation	Issued	26 Mar 2009	

Douglas Partners Pty Ltd

Property details for Lot 217 DP 755242, 18 Gosford Road, Wyee

Summary generated: 2:46PM on 22/11/2021

Parcels

Lot 217 DP 755242

Status

Current

Ward

West Ward

Zones RU2 Rural Landscape

Development applications

DA - 770 / 1992 - Rural dwelling RZ - 7 / 2021 - Rezoning proposal - 18 Gosford Road Wyee ZBA - 182 / 1994 - Farm Machinery Shed ZBA - 3339 / 1993 - Twelve Proposed Greenhouse Igloos ZBA - 2899 / 1993 - Inground Concrete Pool ZBA - 3585 / 1992 - Proposed Brick Veneer/ Hardiplank & Tile Residence

Rates

Status: C Local Government Code: Residential Notice Group: General Valuer General Numbers: 1/07/2002 - 171430 (C)

Waste Collection

Bulk Waste Collection Area 20 Domestic Waste Collection Area - Wednesday B Green/Recycle Waste Collection Area - Wednesday B

State Environmental Planning Policies

SEPP (Affordable Rental Housing) 2009 SEPP (Building Sustainability Index: BASIX) 2004 SEPP (Concurrences) 2018 SEPP (Educational Est Child Care Fac) 2017 SEPP (Exempt and Complying Development Codes) 2008 SEPP (Infrastructure) 2007 SEPP (Koala Habitat Protection) 2020 SEPP (Mining, Petrol Prod, Extractive Ind) 2007 SEPP (Primary Production and Rural Dev) 2019 SEPP (State and Regional Development) 2011 SEPP (State Significant Precincts) 2005 SEPP 19 - Bushland in Urban Areas SEPP 21 - Caravan Parks SEPP 33 - Hazardous and Offensive Development SEPP 50 - Canal Estates SEPP 55 - Remediation of Land SEPP 64 - Advertising and Signage SEPP 65 - Design Quality Residental Apartment Dev SEPP 70 - Affordable Housing (Revised Schemes)

Development Control Plans

Lake Macquarie DCP 2014 Lake Macquarie Draft DCP 2014

CODES SEPP Conditions

There are no CODES SEPP conditions against this property or land.

LEP 2014 Mapped Development Constraints

LEP14 20 ha minimum lot size LEP14 8.5m max building height

Main Conditions

Bush Fire Prone Land - Part Parcel - 2018 Geo 6 - Geotech Zone Lake Macquarie Draft DCP 2014 LEP14 20 ha minimum lot size LEP14 8.5m max building height

Minor Conditions

Administrative Amendment No 9 LEP 2014 Amendment No 15 to LEP 2014 Amendment No 17 to LEP 2014 Citywide Amendment No 19 to LEP 2014 Min lot size Amendment No 21 to LEP 2014 Certain Zones Lake Macquarie LEP 2014 Native Vegetation - 2019 Scenic Management Zone 11 Sewer is unavailable Waste Water Treatment Device

Significant Tree Register

There are no trees on this property that are recorded in Council's Significant Trees Register.

Appendix C

Table C1: Summary of Laboratory Results

ProUCL Output

Douglas Partners

Table C1: Summary of Laboratory Results – Metals, TRH, BTEX, PAH

						м	rtais						т	RH				BT	ΈX			PA	ы	
			9	Ę	min	8		organi c)		_	-C1 0	0-C16	0-BTEQ	216 hess lenvi)	1C30	+C40	8	9	e com	su	n 8	eren (eueu/s	*
			Artee	Cadri	Total On	8	Lea	Mercury () n	NGO	ZIN	TRH OS	TRH xC1	1 ((05-C10	P2 (>C10 4 Naphtha	F3 (AC16	F4 (50)	Benzo	Tokus	Ethyber	Total Xy	Naphhol	Ben zo(a) Baf	Ben zo(a)	Total P
		PQL	4	0.4	1	1	1	0.1	1	1	25	50	25	50	100	100	0.2	0.5	1	1	1	0.05	0.5	0.05
Sample D*	Depth	Sample Date	maka	mgikg	mgikg	mpikg	mgikg	maka	mg/kg	mgikg	mpika	mgkg	maka	mgikg	mgikg	mgikg	mgikg	ubyà	mg/kg	maka	mgikg	mgikg	mpikg	mgikg
1	0-0.1 m	22/10/2020	100 100	20 -	100 190	5 6000 120	300 1100	40 -	400 40	7400 320		- 120	45 180	110 .	- 300	- 2800	0.5 50	100 85	<1 55 70	40 105	3 170	- 0.7	3 .	300 -
2	0 - 0.12 m	22/10/2020	100 100	20 -	100 190	6000 120	300 1100	40 -	400 40	25 7400 320		- 120	45 180	110 -	- 300	- 2800	0.5 50	100 85	<1 55 70	40 105	3 170	- 0.7	3 .	300 -
3	0-0.1 m	22/10/2020	<4 100 100	<0.4	100 120	5	8 300 1100	<0.1	<1 400 40	21 7400 320	- 45	<50	<25 45 180	-30	<100	<100	<0.2 0.5 50	-0.5	<1 55 70	<1 40 105	<1	<0.05	<0.5 3	<0.05
4	0-0.1 m	22/10/2020	-c4 100 100	<0.4	4	14	12 300 1100	<0.1	1 400 40	69 7400 320		<50	<25 45 180	-50	<100	<100	-0.2 0.5 50	<0.5	<1 20	<1 40 105	<1	<0.05	<0.5 3 .	<0.05
5	0.4 - 0.5 m	22/10/2020	<4 100 100	<0.4	7	<1 6000 120	7	<0.1	<1 400 40	5 7400 320	-45	<50	<25 45 100	-d0 110 -	<100	<100	<0.2 0.5 50	-0.5	<1 55 70	<1 40 105	<1 3 170	<0.05	- 40.5	<0.05
6	0-0.1 m	22/10/2020	<4 100 100	<0.4 20 -	100 190	<1 6000 120	4	<0.1	<1 400 40	5 7400 320	-45	<50	<25 45 180	-d0 110 -	<100	<100	<0.2	<0.5	<1 50 70	<1 40 105	<1 3 170	<0.05	- 40.5 3 -	<0.05
QAI	9	22/10/2020	5	<0.4	5	3	6 300 1100	<0.1	1	19 7400 320		<50	<25 45 180	- 450 110 -	<100	<100	-0.2 0.5 50	-0.5	<1 2	<1	<1	<0.05	-0.5	<0.05
7	0.4 - 0.5 m	22/10/2020	c4 100 100	<0.4	21	<1	10	<0.1	<1 400 40	10 7400 320	<25	<50	<25 45 180	-490 110 -	<100	<100	<0.2	<0.5	<1	<1 40 105	<1	<0.05	-0.5	<0.05
8	0.5 - 0.6 m	22/10/2020	c4 100 100	<0.4	6 100 100	1	6	<0.1	3	110	-25	<50	-25	-30	<100	<100	-0.2	<0.5	<1	<1	<1	<0.05	-0.5	<0.05
8	0.9 - 1 m	22/10/2020	c4	<0.4	2	<1	3	<0.1	c1	5	<25	<50	-25		<100	<100	<0.2	<0.5	<1	<1	d	<0.05	<0.5	<0.05
101/0.1	0-0.1 m	19/10/2021	<4	<0.4	3	6	18	<0.1	<1	43	-25	<50	45	-00	<100	<100	<0.2	<0.5	<1	<1	<1	<0.05	<0.5	<0.05
101	0.4 - 0.5 m	19/10/2021	c4	<0.4	1	5	6	<0.1	<1	17		. 120	- 100		- 300	- 2000		-		- 105	-			
102/0.1	0-0.1 m	19/10/2021	-04	<0.4	4	12	56	<0.1	2	180		<50	45		<100	<100	40.2	-0.5	<1	<1	<1	<0.05	-0.5	<0.05
103/0.1	0-0.1 m	19/10/2021	100 100 c4	0.5	100 190	11	300 1100 40	40 - <0.1	400 40	7400 320 140	<25	. 120 <50	45 180	110 · - 430	- 300 <100	- 2000 <100	0.5 50 <0.2	100 85 <0.5	<1	<0 105 <1	3 170	<0.05	40.5	
1040.1	0-0.1 m	19/10/2021	100 100 <4	20 - <0.4	100 190	2	300 1100 S	40 - <0.1	400 40 <1	7400 320 40	1.1	- 120	45 180	110	- 300	- 2800	0.5 50	160 85	55 70 ·	40 105	3 170	- 07	3	300
105/0.1	0-0.1m	19/10/2021	100 100 <4	<0.4	100 190	6000 120 4	300 1100 25	<0.1	400 40 c1	7400 320	1.1	120	45 180	110	- 300	- 2800	0.5 50	160 85		40 105 ·	3 170	. 07	3 4	300
105/0.1	0-0.1m	19/10/2021	100 100 <4	0.7	100 190	5000 120 17	300 1100 710	40 - <0.1	400 40	7400 320 370		. 120 <50	45 180		< 300 <100	<100	0.5 50 <0.2	100 85 <0.5	50 70 <1	40 105 <1	3 170 <1	<0.05	3 .	<0.05
043	0.01m	19/10/2021	100 100	20 - <1	100 190	20	300 1100 905	40 - <0.1	400 40 - 2	7400 320 437		- 120	45 180	110	- 300	- 2000	0.5 50	100 85	55 70 ·	40 105	3 170	- 07	3	
		2010/2021	100 100 c4	20 - <0.4	100 190	6000 120 1	300 1100 B	40 - <0.1	400 40 <1	7400 320 4		- 120 <50	45 180 <25	110 · 	- 300 <100	- 2800 <100	0.5 50 <0.2	100 85 <0.5	00 00 <1	40 105 <1	3 170 <1	- 0.7 <0.05	3 ·	300 - <0.05
1000.0	0.0 - 0.7 m	2010/2021	100 100 c4	20 · <0.4	100 190 10	<pre><000 120 <1</pre>	300 1100	40 · <0.1	400 40 <1	7400 320		- 120	45 180	110	- 300	- 2000	0.5 50	100 85	55 70 ·	40 105 -	3 170	- 07	3	300
1060.5	0.4 - 0.5 m	20/10/2021	100 100 c4	20 - <0.4	100 190	<pre>6000 120 <1</pre>	300 1100 2	40 - <0.1	400 40 <1	7400 320 <1	1.1	- 120	45 180	110	- 300	- 2800	0.5 50	160 👪	55 70	40 105	3 170	· 07	3	300
1090.5	0.4 - 0.5 m	20/10/2021	100 100 c4	20 · · · · · · · · · · · · · · · · · · ·	100 190	<pre>6000 120 <1</pre>	300 1100	40 · <0.1	400 40 <1	7400 320		- 120 <50	45 180 <25	110 -	- 300 <100	< 2800	0.5 50	100 85	50 TO	40 105 <1	3 170	- 0.7 <0.05	3 .	300 ·
1091.0	0.9-1m	20/10/2021	100 100 c4	20 · · · · · · · · · · · · · · · · · · ·	100 190	6000 120 9	300 1100	40 · <0.1	400 40	7400 320		120	45 180	110	- 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	. 0.7	3	300
1100.1	0-0.1 m	19/10/2021	100 100	20 .	100 190	6000 120	300 1100	40 .	400 40	7400 320		. 120	45 180	110	- 300	- 2000	0.5 50	100 85	55 70	40 105	3 170	- 07	3	300
111/0.1	0-0.1 m	19/10/2021	100 100	20 -	100 190	6000 120	300 1100	40 -	400 40	7400 320		- 120	45 180	110	- 300	- 2800	0.5 50	100 85	55 70	40 105	3 170	- 0.7	3 .	300 -
112/0.1	0-0.1 m	19/10/2021	100 100	20 .	100 190	6000 120	300 1100	40 -	***	7400 320	· ·	120	45 180	110 ·	- 300	2000	0.5 50	100 85	50 TO	40 105	3 170	- 0.7	3 ·	300 -
QA2	0-0.1 m	19/10/2021	100 100	20	100 120	5000 120	300 1100	40 ·		7400 320		120	45 180	110	. 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	. 07	3	300
1130.1	0-0.1 m	19/10/2021	100 100	20 .	100 120	6000 120	300 1100	40 -	400 40	7400 320		120	45 180	110	300	2800	0.5 50	160 85	55 70	40 105	3 170	- 07	3	300
1140.1	0-0.1 m	19/10/2021	<4 100 100	<0.4 20 -	100 190	3 6000 120	300 1100	<0.1	<1 400 40	13 7400 320		- 120	45 180	110	- 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	. 07	3	300
1150.1	0-0.1 m	19/10/2021	<4 100 100	<0.4 20 -	2 100 190	4 6000 120	300 1100	<0.1	<1 400 40	19 7400 320		- 120	45 180	110	- 300	- 2800	0.5 50	160 85	55 70	+0 105	- 3 170	. 07	3	300
1160.1	0-0.1 m	19/10/2021	<4 100 100	<0.4 20 ·	6 100 190	10 6000 120	10 300 1100	<0.1	<1 400 40	42 7400 320		. 120	45 180	110	- 300	- 2800	0.5 50	- 160 85		- 40 105	- 3 170	- 07	3	300
117/0.1	0-0.1 m	19/10/2021	<4 100 100	<0.4	5	5	13	<0.1	<1 400 40	40 7400 320		. 120	45 180	110	- 300	- 2800	0.5 50	160 85		40 105	- 3 170	. 07	3	300
118/0.05	0-0.1 m	19/10/2021	<4 100 100	<0.4	8 100 190	4	21	<0.1	1 400 40	75		120	45 180	110	. 300	- 2800	0.5 50	160 85	10	40 105	3 170	. 07	3	300
QAI	0-0.1 m	19/10/2021	8 100 100	<0.4	14 100 190	4	23 300 1100	<0.1	<1 400 40	60 7400 320		120	45 180	110	- 300	- 2800	0.5 50	100 85	- 55 70	- 105	3 170	0.7	3	300
1190.1	0-0.1 m	19/10/2021	c4	<0.4	5	<1	6 300 1100	<0.1	<1	4		. 120	45 (80	110	. 300	- 2000	0.5 50	160 🔊		40 105		. 07	3	300
120.0.05	0-0.1 m	19/10/2021	6	<0.4	10 10	1	12	<0.1	a 6	14				155							-			
121/0.1	0-0.1 m	19/10/2021	4	<0.4	9	1	8	<0.1	a .	5	<25	<50	- 425		<100	<100	<0.2	<0.5	<1	<1	d 1 (20)	<0.05	-0.5	<0.05
122/0.05	0-0.1 m	19/10/2021	-00 100 c4	<0.4	4	4	4	<0.1	40 <1	14		*20	- 180	172		- 2800							-	~
123/0.05	0-0.1 m	19/10/2021	7	<0.4	100 190	3	300 1100	<0.1	<0 40 40 <1	7400 320 22	1.1	- 120	45 180	110	- 300	- 2800	0.5 50	100 85	55 TO -	+0 105	3 170	- 07	3	300
1240.05	0-0.1 m	19/10/2021	100 100 <4	<0.4	100 190	6000 120 4	300 1100 6	40 - <0.1	400 40 <1	7400 320 15		. 120	45 180	110	- 300	- 2800	0.5 50	160 85	55 70 ·	40 105 -	3 170	- 07	3 4	300 .
1250.1	0-0.1m	19/10/2021	100 100 <4	<0.4	100 190 6	5000 120 4	300 1100 6	<0.1	400 40 <1	7400 320 13		120	45 180	110	. 300	2000	0.5 50	100 85	55 70 ·	40 105	3 170	- 07	3	300
			100 100	20	100 190	6000 120	300 1100	40 -	400 40	7400 320		- 120	45 180	110 -	- 300	- 2800	0.5 50	160 85	55 70	40 105	3 170	. 0.7	3 -	300 -

HLMSL exceedance 📕 ELESL exceedance = HLMSL and ELESL exceedance 📰 ML exceedance = ML and HLMSL or ELESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance D HSL 0-<1 Exceedance</p>

Bold = Lab detections -= Not tested or No HIL/HSL/ESL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HL = Health investigation level HSL = Health scheming level (excluding DC) EL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes: a QAVC replicate of sample lated directly below the primary sample b Reported naphthalisms laboratory result obtained from STEXN suite

- Brannanter Christig (AK):
 Reduced and is made to the SQL starting of the signet. Survey referencies in Market
 All control arows: Inter out anyon: Net inter Annotation and Market Annotation and Market Annotation and Ann

Table C1: Summary of Laboratory Results - OCP, OPP, PCB, Asbestos

									OCP						OPP	PCB			Asb	estos		
				QQQ	r+DDE+DDD ^c	DDE	DDT	drin & Dieldrin	aal Chordane	Endrin	tal Endosultan	Heptachlor	achlorobenzene	d et hoxy chlor	hlorpyriphos	Total PCB	es tos 1D in soil >0.1g/kg	race Analysis	CM >7mm Estimation	FA and AF Estimation	EA and AF Estimation	Asbestos (Summary)
			POL	0.1	0.1	0.1	0.1	₹ 0.1	Ĕ 0.1	0.1	P 0.1	0.1	Ŭ Ĥ 0.1	2	01	0.1	Asb.	Ē.	<		<0.001	
	Sample ID ^a	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	-	-	g	g	%(w/w)	-
	1	0 - 0.1 m	22/10/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			-		-		-
1 1	2	0 - 0.12 m	22/10/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			-			-	-
····································	3	0 - 0.1 m	22/10/2020	<0.1	240 180 <0.1	<0.1	<0.1	<0.1	<0.1	10 - <0.1	<0.1	<0.1	<0.1	<0.1	<0.1	1		-	-	-	-	-
· · · · 1 · · · · · · 1 · · · · ·	4	0 - 0.1 m	22/10/2020	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1			-	- ·	-	-	-
h h <	5	0.4 - 0.5 m	22/10/2020	<0.1	240 180 <0.1	<0.1	<0.1	6 - <0.1	<0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1 -	NAD	NAD	-	-	-	NAD
Phy Phy Phy Phy Phy Phy </td <td>6</td> <td>0 - 0.1 m</td> <td>22/10/2020</td> <td><0.1</td> <td>240 180 <0.1</td> <td><0.1</td> <td><0.1</td> <td>6 - <0.1</td> <td><0.1</td> <td>10 - <0.1</td> <td>270 - <0.1</td> <td>6 - <0.1</td> <td>10 - <0.1</td> <td>300 - <0.1</td> <td>160 - <0.1</td> <td>1</td> <td>NAD</td> <td>NAD</td> <td></td> <td>-</td> <td>-</td> <td>NAD</td>	6	0 - 0.1 m	22/10/2020	<0.1	240 180 <0.1	<0.1	<0.1	6 - <0.1	<0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1	NAD	NAD		-	-	NAD
H H H H	QA1	0 - 0.1 m	22/10/2020	<0.1	240 180 <0.1	<0.1	<0.1	6 - <0.1	<0.1	10 - <0.1	270 - <0.1	6 . <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1		-				-
Physical Phy	7	0.4 - 0.5 m	22/10/2020		240 180 -		- 180	6 -	50 -	10 -	270 -	6 -	10	300 -	160 -	1 -		-				-
Image: book of the state	8	0.5 - 0.6 m	22/10/2020	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - ≺0.1	1 -	NAD	NAD		-	-	NAD
Image Image <t< td=""><td>8</td><td>0.9 - 1 m</td><td>22/10/2020</td><td></td><td>240 180 -</td><td></td><td>- 180</td><td><u>6</u> -</td><td>50 -</td><td>10 -</td><td>- 270</td><td>6 -</td><td>- 10 -</td><td>300 -</td><td>160 -</td><td>1 -</td><td></td><td>-</td><td></td><td></td><td></td><td>· ·</td></t<>	8	0.9 - 1 m	22/10/2020		240 180 -		- 180	<u>6</u> -	50 -	10 -	- 270	6 -	- 10 -	300 -	160 -	1 -		-				· ·
Image Image <t< td=""><td>101/0.1</td><td>0-0.1 m</td><td>19/10/2021</td><td><0.1</td><td>240 180 <0.1</td><td><0.1</td><td><0.1</td><td>6 - <0.1</td><td>50 - <0.1</td><td>10 - <0.1</td><td>270 - <0.1</td><td>6 - <0.1</td><td>10 - <0.1</td><td>300 - <0.1</td><td>160 - <0.1</td><td>1 - <0.1</td><td>NAD</td><td>NAD</td><td>0.0134</td><td>-</td><td><0.001</td><td>AD</td></t<>	101/0.1	0-0.1 m	19/10/2021	<0.1	240 180 <0.1	<0.1	<0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1 - <0.1	NAD	NAD	0.0134	-	<0.001	AD
N N N N N	101	04-05m	19/10/2021		240 180 -	· · ·	- 180	6 -	50 -	10 -	270 -	6 -	10	300 -	160 -	1						
N N	102/0.1	0-01m	19/10/2021	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1 - <0.1	NAD	NAD			<0.001	NAD
Image Image <t< td=""><td>102/0.1</td><td>0.01m</td><td>10/10/2021</td><td><0.1</td><td>240 180 <0.1</td><td><0.1</td><td>- 180 <0.1</td><td>6 - <0.1</td><td>50 - <0.1</td><td>10 - <0.1</td><td>270 - <0.1</td><td>6 - <0.1</td><td>10 - <0.1</td><td>300 - <0.1</td><td>160 - <0.1</td><td>1 - <0.1</td><td>NAD</td><td>NAD</td><td> </td><td>0.0006</td><td>-0.001</td><td>40</td></t<>	102/0.1	0.01m	10/10/2021	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1 - <0.1	NAD	NAD		0.0006	-0.001	40
No. No. <td>103/0.1</td> <td>0-0.11</td> <td>10/10/2021</td> <td><0.1</td> <td>240 180 <0.1</td> <td><0.1</td> <td>- 180 <0.1</td> <td>6 - <0.1</td> <td>50 - <0.1</td> <td>10 - <0.1</td> <td>270 - <0.1</td> <td>6 - <0.1</td> <td>10 - <0.1</td> <td>300 - <0.1</td> <td>160 - <0.1</td> <td>1</td> <td>NAD</td> <td>100</td> <td>-</td> <td>0.0000</td> <td>0.001</td> <td>~~</td>	103/0.1	0-0.11	10/10/2021	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1	NAD	100	-	0.0000	0.001	~~
10.10 10.10 </td <td>104/0.1</td> <td>0-0.1 m</td> <td>19/10/2021</td> <td><0.1</td> <td>240 180 <0.1</td> <td> <0.1</td> <td>- 180 <0.1</td> <td>6 - <0.1</td> <td>50 - <0.1</td> <td>10 - <0.1</td> <td>270 - <0.1</td> <td>6 - <0.1</td> <td>10 - <0.1</td> <td>300 - <0.1</td> <td>160 - <0.1</td> <td>1</td> <td>NAD</td> <td>NAD</td> <td>-</td> <td>-</td> <td><0.001</td> <td>NRD</td>	104/0.1	0-0.1 m	19/10/2021	<0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1	NAD	NAD	-	-	<0.001	NRD
10 10	105/0.1	0-0.1 m	19/10/2021	 <0.1	240 180 <0.1	 <0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1 - <0.1	NAD	NAD		-	<0.001	NAD
O O </td <td>106/0.1</td> <td>0 - 0.1 m</td> <td>19/10/2021</td> <td></td> <td>240 180</td> <td>· · ·</td> <td>- 180</td> <td>6 -</td> <td>50 -</td> <td>10 -</td> <td>270 -</td> <td>6 -</td> <td>10 -</td> <td>300 -</td> <td>160 -</td> <td>1 -</td> <td>AD</td> <td>NAD</td> <td>0.2417</td> <td></td> <td><0.001</td> <td>AD</td>	106/0.1	0 - 0.1 m	19/10/2021		240 180	· · ·	- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	1 -	AD	NAD	0.2417		<0.001	AD
	QA3	0 - 0.1 m	19/10/2021	<0.1	240 180 <0.1	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 - <0.1	270 - <0.1	6 - <0.1	10 - <0.1	300 - <0.1	160 - <0.1	1 - <0.1	-	-	•	-	•	· ·
1000 10000 1000 1000 100	107/0.7	0.6 - 0.7 m	20/10/2021	<0.1	240 180	<0.1	- 180 <0.1	6 - <0.1	50 - <0.1	10 -	270 -	6 -	10 - <0.1	300 - <0.1	160 -	1		-	•	-	-	· ·
Index Index Index <	108/0.5	0.4 - 0.5 m	20/10/2021	<0.1	240 180		- 180	6 -	50 -	10 -	270 -	6 ·	10 -	300 ·	160 -	1 -	-	-	-	-	-	
100 100	109/0.5	0.4 - 0.5 m	20/10/2021		240 180		- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	1 -		-	· ·	-		
1010 1010 100	109/1.0	0.9 - 1 m	20/10/2021		240 180		- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	1 .		-	· ·	-		
1111 0	110/0.1	0 - 0.1 m	19/10/2021		240 180		- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	1 -		-	· ·	-		- ·
11 11<	111/0.1	0 - 0.1 m	19/10/2021		240 180		- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	1 -		-	-	-	-	
A N	112/0.1	0 - 0.1 m	19/10/2021		240 180		- 180	6 -	50 -	10 -	270 -	6 -	10 -	300 -	160 -	1 -		-	-	-	-	-
111 111 <td>QA2</td> <td>0 - 0.1 m</td> <td>19/10/2021</td> <td></td> <td>240 180</td> <td></td> <td>- 180</td> <td>6 .</td> <td>50</td> <td>10</td> <td>270</td> <td>6 -</td> <td>10</td> <td>300</td> <td>160</td> <td>1</td> <td>-</td> <td>-</td> <td>•</td> <td>-</td> <td>•</td> <td>-</td>	QA2	0 - 0.1 m	19/10/2021		240 180		- 180	6 .	50	10	270	6 -	10	300	160	1	-	-	•	-	•	-
100 100 <td>113/0.1</td> <td>0 - 0.1 m</td> <td>19/10/2021</td> <td><0.1</td> <td><0.1 240 180</td> <td><0.1</td> <td><0.1</td> <td><0.1 6 -</td> <td><0.1 50 -</td> <td><0.1 10 -</td> <td><u.1 270 -</u.1 </td> <td><u.1 6 -</u.1 </td> <td><0.1 10 -</td> <td><u.1 300 -</u.1 </td> <td><0.1 160 -</td> <td>1</td> <td>-</td> <td>-</td> <td>•</td> <td>-</td> <td>-</td> <td></td>	113/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1 6 -	<0.1 50 -	<0.1 10 -	<u.1 270 -</u.1 	<u.1 6 -</u.1 	<0.1 10 -	<u.1 300 -</u.1 	<0.1 160 -	1	-	-	•	-	-	
1000 0.01/2 <td>114/0.1</td> <td>0 - 0.1 m</td> <td>19/10/2021</td> <td><0.1</td> <td><0.1 240 180</td> <td><0.1</td> <td><0.1</td> <td><0.1 6 -</td> <td><0.1 50 -</td> <td><0.1 10 -</td> <td><u.1 270 -</u.1 </td> <td><u.1 6 -</u.1 </td> <td><0.1 10 -</td> <td><u.1 300 -</u.1 </td> <td><0.1 160 -</td> <td>1</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td></td> <td>-</td>	114/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1 6 -	<0.1 50 -	<0.1 10 -	<u.1 270 -</u.1 	<u.1 6 -</u.1 	<0.1 10 -	<u.1 300 -</u.1 	<0.1 160 -	1	-	-		-		-
1011 0-10 0.01 <th< td=""><td>115/0.1</td><td>0 - 0.1 m</td><td>19/10/2021</td><td><0.1</td><td><0.1 240 180</td><td><0.1</td><td><0.1 - 180</td><td><0.1 6 -</td><td><0.1 50 -</td><td><0.1 10 -</td><td><0.1 270 -</td><td><0.1 6 -</td><td><0.1 10 -</td><td><0.1 300 -</td><td><0.1 160 -</td><td>1 -</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></th<>	115/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	1 -	-	-	-	-	-	-
11111 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 +	116/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	1 -	-	-	•	-	-	·
heat heat eat eat<	117/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1 - 180	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	1 -		-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	118/0.05	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1 6 -	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 ·	<0.1 300 -	<0.1 160 -	1		-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	QA1	0 - 0.1 m	19/10/2021		- 240 180		- 180	6	50	10	270	6	10	300	160	1		-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	119/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1 6 -	<0.1	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	1	-	-	-	-	-	<u> </u>
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	120/0.05	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1 6 -	<0.1 10 -	<0.1 300 -	<0.1 160 -	1 -	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	121/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1 10 -	<0.1 300 -	<0.1 160 -	<0.1 1 ·	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	122/0.05	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1 50 -	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1 300 -	<0.1 160 -	1 -	-	-	-	-	-	-
1240.6 0-0.1m 19/10201 -0.1	123/0.05	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1 300 -	<0.1 160 -			-	· ·	-	-	-
1250.1 0-0.1 m 19102021 <td>124/0.05</td> <td>0 - 0.1 m</td> <td>19/10/2021</td> <td><0.1</td> <td><0.1 240 180</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1</td> <td><0.1 10 -</td> <td><0.1 270 -</td> <td><0.1</td> <td><0.1</td> <td><0.1 300 -</td> <td><0.1 160 -</td> <td></td> <td></td> <td>-</td> <td></td> <td>-</td> <td></td> <td></td>	124/0.05	0 - 0.1 m	19/10/2021	<0.1	<0.1 240 180	<0.1	<0.1	<0.1	<0.1	<0.1 10 -	<0.1 270 -	<0.1	<0.1	<0.1 300 -	<0.1 160 -			-		-		
	125/0.1	0 - 0.1 m	19/10/2021	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1 10 -	<0.1	<0.1	-	-	-	-	-	-	-

HIL/HSL exceedance 📕 EIL/ESL exceedance 📕 HIL/HSL and EIL/ESL exceedance 📕 ML exceedance 📕 ML and HIL/HSL or EIL/ESL exceedance

Indicates that asbestos has been detected by the lab, refer to the lab report Blue = DC exceedance HSL 0-<1 Exceedance

Bold = Lab detections -= Not tested or No HIL/HSL/EIL/ESL (as applicable) or Not applicable NL = Non limiting AD = Asbestos detected NAD = No Asbestos detected

HL = Health investigation level HSL = Health screening level (excluding DC) EIL = Ecological investigation level ESL = Ecological screening level ML = Management Limit DC = Direct Contact HSL

Notes: a QA/QC replicate of sample listed directly below the primary sample c Criteria applies to DDT only

 Site Assessment Criteria (BAC):

 Relevence should be made to the SAC section of the report. Summary information as follows:

 SAC based on generic land use thresholds for Residential A with garden/accessible soil

 HL
 Residential / Low -High Density (NEPC, 2013)

 HSL AB
 Residential / Low -High Density (Ideour instrusion) (NEPC, 2013)

 DO HSL A
 Direct contact (SRC CARE; 2011)

 LIELSL UR/POS
 Hourh Residential A Public Open Space (NEPC, 2013)

 ML R/IPPOS
 Residential, Low -High Low She Space (NEPC, 2013)

	A	В	С	D	E	F	G	H H	I	J	K	L
1					UCL Statis	Stics for Unc	ensored Full	Data Sets				
2												
3		User Sele			1/11/2021 7							
4	0		Erom Filo	MorkShoot y	(4/11/2021 /	.27.32 AIVI						
5		Fu		OFF	45							
6		Confidence		95%								
7	Number	of Bootstran		2000								
8	Tumber	of Dootstrup	operations	2000								
9												
10	Zinc (Data	set 1)										
10												
12						General	Statistics					
14			Total	Number of O	bservations	21			Numbe	r of Distinct C	Observations	17
14									Numbe	r of Missing C	Observations	0
16					Minimum	6				-	Mean	70.62
17					Maximum	437					Median	40
18					SD	99.25				Std. E	rror of Mean	21.66
19				Coefficient	of Variation	1.405					Skewness	2.821
20												
21						Normal (GOF Test					
22			S	hapiro Wilk T	est Statistic	0.643			Shapiro W	ik GOF Test		
23			5% S	hapiro Wilk C	ritical Value	0.908		Data No	ot Normal at	5% Significar	nce Level	
24				Lilliefors T	est Statistic	0.276			Lilliefors	GOF Test		
25			5	% Lilliefors C	ritical Value	0.188		Data No	ot Normal at	5% Significar	ice Level	
26					Data Not	Normal at 5	5% Significar	nce Level				
27												
28					As	suming Nor	mal Distribut	ion				
29		95% Normal UCL 95% UCLs (Adjusted for Skewness)										
30				95% Stud	lent's-t UCL	108			95% Adjuste	ed-CLT UCL ((Chen-1995)	120.5
31									95% Modifi	ed-t UCL (Joł	nnson-1978)	110.2
32						-						
33						Gamma	GOF Test	<u> </u>				
34				A-D I	est Statistic	0.767	.		rson-Darling	Gamma GO	FTest	
35				5% A-D C	ritical Value	0.776	Detected	d data appea	ar Gamma D	Istributed at 5	Significan	ce Level
36				K-S I	est Statistic	0.189	Detecto	Kolmog	jorov-Smirne	ov Gamma G		
37				Dotoctod		0.190	Detected	u data appea		Istributed at 5	5% Significan	ce Level
38				Delected	uata appea	Gamma Di		5% Significa				
39						Gamma	Statistics					
40					k hat (MLE)	0.873	Claistics		k	star (hias cor	rected MLE)	0.78
41				Thet	a hat (MLE)	80.91			Theta	star (bias cor	rected MLE)	90.55
42				n	u hat (MLE)	36.66				nu star (bia	s corrected)	32.75
43			М	LE Mean (bias	s corrected)	70.62				MLE Sd (bia	as corrected)	79.97
44					,				Approximate	Chi Square	Value (0.05)	20.67
40			Adjus	sted Level of S	Significance	0.0383			A	djusted Chi S	quare Value	19.93
40			,		5						•	
47					As	suming Gan	nma Distribut	tion				
40		95% Approxi	mate Gamm	a UCL (use w	hen n>=50)	111.9		95% Ac	ljusted Gam	ma UCL (use	when n<50)	116
50				-	,	<u> </u>					,	
51						Lognorma	I GOF Test					
52			S	hapiro Wilk T	est Statistic	0.96		Sha	piro Wilk Log	normal GOF	Test	
53			5% S	hapiro Wilk C	ritical Value	0.908		Data appea	ar Lognormal	at 5% Signifi	icance Level	
54				Lilliefors T	est Statistic	0.126		Lil	liefors Logn	ormal GOF T	est	
55			5	% Lilliefors C	ritical Value	0.188		Data appea	ar Lognormal	at 5% Signifi	cance Level	
56	1			ſ	Data appear	Lognormal	at 5% Signif	icance Leve	;I			
57												

	А	В	С	D	E	F	G	Н		J	K	L
58						Lognorma	Statistics					
59				Minimum of L	_ogged Data	1.792				Mean of I	ogged Data	3.585
60			Ν	Maximum of L	ogged Data	6.08				SD of I	ogged Data	1.164
61												
62					Ass	uming Logno	rmal Distrib	ution				
63					95% H-UCL	146.9			90%	Chebyshev (N	/IVUE) UCL	126.8
64			95% (Chebyshev (I	MVUE) UCL	153.6			97.5%	Chebyshev (N	/VUE) UCL	190.9
65			99% (Chebyshev (I	MVUE) UCL	264.1						
66												
67					Nonparame	etric Distribut	ion Free UC	L Statistics				
68				Data appea	r to follow a	Discernible I	Distribution a	at 5% Signif	icance Level			
60								-				
70					Nonpa	rametric Dist	ribution Fre	e UCLs				
70				95	% CLT UCL	106.2				95% Jac	kknife UCL	108
72			95%	Standard Bo	otstrap UCL	105.6				95% Boot	strap-t UCL	143
72			9	5% Hall's Bo	otstrap UCL	236.6			95% F	Percentile Boo	otstrap UCL	109
73			(95% BCA Bo	otstrap UCL	130.7						
74			90% Ch	ebyshev(Me	an, Sd) UCL	135.6			95% Ch	ebyshev(Mea	an, Sd) UCL	165
75			97.5% Ch	ebyshev(Me	an, Sd) UCL	205.9			99% Ch	ebyshev(Mea	an, Sd) UCL	286.1
70				, ,	. ,					, (, ,	
77						Suggested	UCL to Use					
70			959	% Adjusted C	Gamma UCL	116						
73 00												
00 Q1		Note: Sugges	stions regard	ling the selec	tion of a 95%	UCL are pro	ovided to hel	p the user to	select the m	lost appropria	te 95% UCL.	
82			F	Recommenda	tions are bas	sed upon dat	a size, data (distribution, a	and skewnes	s		
02 93		These recor	nmendations	s are based u	pon the resu	Its of the sim	ulation studi	es summariz	zed in Singh,	Maichle, and	Lee (2006).	
0J 0J	Ho	wever, simu	lations result	s will not cov	ver all Real W	/orld data set	s; for additio	nal insight th	ne user may	want to consu	It a statisticia	an.
85									-			
86												
87	Zinc (Datas	set 2)										
88												
89						General	Statistics					
90			Total	Number of C	bservations	8			Number	of Distinct O	bservations	7
91									Number	of Missing O	bservations	0
92					Minimum	6					Mean	125.6
93					Maximum	437					Median	91.5
94					SD	145.4				Std. Er	ror of Mean	51.42
95				Coefficient	t of Variation	1.158					Skewness	1.571
96												
97			Note: Sam	ple size is sn	nall (e.g., <1	0), if data ar	e collected u	using ISM ap	oproach, you	should use		
98			guidance pr	ovided in ITF	RC Tech Reg	g Guide on IS	SM (ITRC, 2	012) to com	pute statistic	s of interest.		
99			For e	example, you	u may want t	o use Cheby	shev UCL to	o estimate E	PC (ITRC, 2	012).		
100			Chebyshev	/ UCL can be	e computed (using the No	nparametric	and All UCL	Options of	ProUCL 5.1		
101												
102						Normal C	OF Test					
103			S	hapiro Wilk T	Fest Statistic	0.813			Shapiro Wi	lk GOF Test		
104			5% SI	hapiro Wilk C	Critical Value	0.818		Data No	ot Normal at 5	5% Significan	ce Level	
105				Lilliefors T	Fest Statistic	0.229			Lilliefors	GOF Test		
106			5	% Lilliefors C	Critical Value	0.283		Data appe	ear Normal a	t 5% Significa	nce Level	
107				Data	appear App	roximate No	rmal at 5% S	Significance	Level			
108												
109					As	suming Norr	nal Distribut	ion				
110			95% No	ormal UCL				95%	UCLs (Adju	sted for Skev	vness)	
111				95% Stu	dent's-t UCL	223			95% Adjuste	d-CLT UCL (Chen-1995)	240.7
112									95% Modifie	ed-t UCL (Joh	nson-1978)	227.8
113												
114						Gamma (GOF Test					

	A	В	С	D	E	F	G	Н	I	J	K	L
115				A-D T	est Statistic	0.331		Ander	son-Darling	Gamma GC	OF Test	
116				5% A-D C	critical Value	0.748	Detected	d data appea	r Gamma D	istributed at §	5% Significar	ce Level
117				K-S T	est Statistic	0.188		Kolmog	orov-Smirn	ov Gamma G	OF Test	
118				5% K-S C	ritical Value	0.305	Detected	d data appea	ir Gamma D	istributed at §	5% Significar	ce Level
119				Detected	data appear	r Gamma Di	stributed at 5	5% Significa	nce Level			
120												
121						Gamma	Statistics					
122					k hat (MLE)	0.706			k	star (bias cor	rrected MLE)	0.525
123				The	ta hat (MLE)	177.8			Theta	star (bias cor	rrected MLE)	239.4
124				n	u hat (MLE)	11.3				nu star (bia	as corrected)	8.397
125			M	LE Mean (bia	s corrected)	125.6				MLE Sd (bia	as corrected)	173.4
126					0	0.0405			Approximate	e Chi Square	Value (0.05)	2.967
127			Adjus	sted Level of	Significance	0.0195			A	djusted Chi S	square Value	2.213
128							D' 1.1	•				
129					As	suming Gam	ima Distribut					470.0
130	, ,	5% Approxii	mate Gamma	UCL (use w	hen n>=50))	355.5		95% Ad	justed Gam	ma UCL (use	when n<50)	476.6
131												
132				L		Lognorma	IGOF Test	Ohar				
133			5	hapiro Wilk I	est Statistic	0.904		Snap		gnormal GOF		
134			5% S			0.818		Data appea	r Lognorma	at 5% Signif	icance Level	
135			F	Lilliefors I	est Statistic	0.223		LIII		ormal GOF		
136			5	% Lillieiors C		0.203	ot 5% Cignifi		г соупогта	at 5% Signii		
137					Data appear	Lognormal	at 5% Signin	cance Leve				
138						Lognorma	l Statistica					
139				Minimum of I	oggod Data	1 702				Moon of	loggod Data	3 070
140			Ν			6.08				SD of	logged Data	1.625
141			ľ			0.08				50 0	loggeu Dala	1.025
142					Δεει	imina Loanc	rmal Distrib	ition				
143					95% H-UCI	4540			90%	Chebyshev (410.3
144			95%	Chebyshev (I		527.8			97.5%	Chebyshev (690.9
145			99%	Chebyshev (I	MVUE) UCL	1011			07.070			000.0
140												
147					Nonparame	etric Distribu	tion Free UC	L Statistics				
140				Data appea	r to follow a	Discernible	Distribution a	at 5% Signifi	cance Leve	1		
149												
151					Nonpa	rametric Dis	tribution Free	UCLs				
152				95	· % CLT UCL	210.2				95% Ja	ckknife UCL	223
152			95%	Standard Bo	otstrap UCL	204.5				95% Boo	otstrap-t UCL	285.3
154			9	5% Hall's Bo	otstrap UCL	470.3			95%	Percentile Bo	ootstrap UCL	206.1
155				95% BCA Bo	otstrap UCL	231.8						
156			90% Ch	ebyshev(Mea	an, Sd) UCL	279.9			95% CI	nebyshev(Me	an, Sd) UCL	349.8
157			97.5% Ch	ebyshev(Mea	an, Sd) UCL	446.7			99% CI	nebyshev(Me	an, Sd) UCL	637.2
158												
159						Suggested	UCL to Use					
160				95% Stud	dent's-t UCL	223						
161												<u> </u>
162			When a c	lata set follov	vs an approx	imate (e.g., r	normal) distri	bution passi	ng one of the	e GOF test		
163		When app	licable, it is s	suggested to	use a UCL ba	ased upon a	distribution (e.g., gamma) passing bo	oth GOF tests	s in ProUCL	
164												
165		Note: Sugge	stions regard	ling the selec	tion of a 95%	UCL are pr	ovided to hel	p the user to	select the r	nost appropri	ate 95% UCL	
166			F	Recommenda	tions are bas	sed upon dat	a size, data o	distribution, a	and skewne	SS.		
167		These reco	mmendations	s are based u	pon the resu	Its of the sim	ulation studie	es summariz	ed in Singh	, Maichle, and	d Lee (2006).	
168	Ho	wever, simu	lations result	s will not cov	er all Real W	/orld data se	ts; for additio	nal insight th	ne user may	want to cons	ult a statistic	an.
169												

Appendix D

Borehole and Test pit Logs

Sampling Methods

Soil Descriptions

Symbols and Abbreviations

	BORI	EHOLE LOG	
CLIENT: PROJECT: LOCATION:	June Waldon Proposed Residential Subdivision 18 Gosford Road, Wyee	SURFACE LEVEL: 29.88 AHD EASTING: 359085.9 NORTHING: 6327132.4 DIP/AZIMUTH: 90°/	BOR PRO DAT SHE

RE No: 1 JECT No: 104136.00 E: 22/10/2020 ET 1 OF 1

		Description	Di		Sam	npling &	& In Situ Testing	<u> </u>	Well	
R	Depth (m)	of	Graph	ype	epth	ample	Results & Comments	Wate	Construction	
\vdash		Strata FILL/SAND: medium grained, pale grey, trace rootlets,				Sa	PID<1npm		Details	
-		moist, fill			0.1		РЮКтррпт		-	
	0.2	Silty SAND SM: medium grained, grey-brown, trace clay							-	
		(approximately 2 % to 3 %), moist	l-i-i-i	D/E	0.3		PID<1ppm		-	
	0.5				0.4					
-	0.0	Gravelly SAND GP: poorly graded, brown and yellow-brown, subrounded ironstone ridge gravels, moist,	0						-	
-		residual	. 0		0.7				-	
-			0	D/E	0.8		PID<1ppm		-	
-62		- From 0.9m: with clay (5% to 10%)								
Į	-1 1.0	Bore discontinued at 1.0m- limit of investigation							1	
									-	
-									-	
-									-	
-									-	
									-	
-8									-	
	-2								-2	
-									-	
-									-	
-									-	
									-	
									-	
27									-	
+ +	- 3								-3	

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

LOGGED: MJH

SURFACE LEVEL: 32.70 AHD **EASTING:** 359126 **NORTHING:** 6327122.52 DIP/AZIMUTH: 90°/--

BORE No: 2 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

		Description	<u>ic</u>		San	npling &	& In Situ Testing	_	Well
R	Depth (m)	of	iraph Log	/pe	pth	nple	Results &	Wate	Construction
		Strata	0	ŕ		Sar	Comments	-	Details
-	-	Silty SAND SM: medium grained, brown, trace rootlets, trace clay (2% to 3%), moist		D	0.0				
-	- 0.2 - 0.35	Gravelly SAND GP: poorly graded, brown and yellow-brown, subrounded ironstone ridge gravels, with clay (5% to 10%), moist, residual	0	D/E	0.2		PID<1ppm		-
-	-	Sandy CLAY CL: low plasticity, yellow-brown and red-brown, trace ironstone gravels, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.5</td><td></td><td>PID<100m</td><td></td><td>-</td></pl,>		D/E	0.5		PID<100m		-
32	-		· / · / · · / · / ·	D/L	0.6				-
-	-		· · · · · · · · · · · · · · · · · · ·						-
-	-1 1.0	Bore discontinued at 1.0m- limit of investigation	[· <u>/</u> . · <u>/</u> .						1
	-								-
-	-								-
-	-								-
31-	-								-
-	-								-
-	-2								-2
-	-								-
-	-								-
-	-								-
- 20	-								-
	-								-
-	-3								-3
-	-								-
-	-								
-	-								

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

CDE

LOGGED: MJH

CASING:

PROJECT:

CLIENT:

Proposed Residential Subdivision LOCATION: 18 Gosford Road, Wyee

June Waldon

SURFACE LEVEL: 31.52 AHD **EASTING:** 359090.1 **NORTHING:** 6327093.06 **DIP/AZIMUTH:** 90°/--

BORE No: 3 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

		Description	U		Sarr	npling &	& In Situ Testing		\\/ell
R	Depth	of	aphic -og	ø	÷		Populto 8	/ater	Construction
	(11)	Strata	5	Typ	Dep	Sam	Comments	2	Details
-	-	Silty SAND SM: medium grained, brown, trace rootlets, trace clay (2% to 3%), moist	· · · · ·	D/E	0.0		PID<1ppm		-
31	- 0.45 - -	Sandy CLAY CL: low plasticity, yellow-brown and red-brown, with subrounded ironstone ridge gravels, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.5</td><td></td><td>PID<1ppm</td><td></td><td>-</td></pl,>		D/E	0.5		PID<1ppm		-
-	- 1 1.0	Para discontinued at 4.0m limit of investigation	·/·/· ·/·/·						-
	- - - - - - - - - - - - - - - - - - -	Bore discontinued at 1.0m- limit of investigation							

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

A Auger sample B Bulk sample BLK Block sample

CDE

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 33.68 AHD EASTING: 359120.98 **NORTHING:** 6327089.57 **DIP/AZIMUTH:** 90°/--

BORE No: 4 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

	1		1							
	Depth	Description	hic		Sam	pling a	& In Situ Testing	ы	Well	
R	(m)	of Strata	Grap	Type	Depth	Sample	Results & Comments	Wate	Construction Details	
		Silty SAND SM: medium grained, brown, trace rootlets,	$ \cdot \cdot \cdot $	D/E	0.0		PID<1ppm			
-	- 0.3	Sandy CLAY CL: low plasticity, yellow-brown and	· · · · · · · · · · · · · · · · · · ·		0.1				-	
ſ	-	v <pl, residual<="" td=""><td>·/·/·</td><td>D/E</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td></pl,>	·/·/·	D/E	0.4		PID<1ppm		-	
	-				0.5				-	
ŀ	-1 1.0	Bore discontinued at 1.0m- limit of investigation	<u> ·∕·∕</u>						1	
	-									
-	-2								-2	

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

CDE

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

CASING:

SAMPLING & IN SITU TESTING LEGEND LEGEND PID Photo ionisation detector (ppm) PL(A) Point load axial test Is(50) (MPa) PL(D) Point load diametral test Is(50) (MPa) pp Pocket penetrometer (kPa) S Standard penetration test V Shear vane (kPa) LING & IN SITUTESTING G Gas sample P Piston sample U, Tube sample (x mm dia.) W Water sample P Water seep Water level A Auger sample B Bulk sample BLK Block sample Core drilling Disturbed sample Environmental sample

SURFACE LEVEL: 32.76 AHD EASTING: 359087.54 NORTHING: 6327037 DIP/AZIMUTH: 90°/-- BORE No: 5 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

		Description	<u>ں</u>		Sam	ipling 8	& In Situ Testing		Well
R	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Water	Construction Details
-	-	FILL/Sandy CLAY: low plasticity, yellow-brown and grey, trace sandstone gravels, w <pl, fill<="" td=""><td></td><td>D/E</td><td>0.0</td><td></td><td>PID<1ppm</td><td></td><td>-</td></pl,>		D/E	0.0		PID<1ppm		-
32	- 0.4 	FILL/Sandy CLAY: high plasticity, grey and yellow-brown, trace sandstone and ironstone gravels, trace organics, w>PL (wet), fill		D/E	0.4		PID<1ppm		-
-	- 1 			D/E	1.0		PID<1ppm		-1
31	-			D/E	1.5		PID<1ppm		-
-	-2			D/E	2.0		PID<1ppm		-2
30	-			D/E	2.5 2.6		PID<1ppm		-
-	- 2.9	CLAY CH: high plasticity, grey, trace sand, w>PL (wet), residual		D/E	2.9 3.0		PID<1ppm		-3
-	- 3.2	Bore discontinued at 3.2m- limit of investigation	<u>× / /</u>						-

 RIG:
 TOYOTA 4WD
 DRILLER:
 MJH

 TYPE OF BORING:
 60mm Ø Dynamic Continous Push Tube Sampling

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 Location coordinates are in MGA94 Zone 56 H.

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 33.02 AHD EASTING: 359083.69 **NORTHING:** 6327017.54 DIP/AZIMUTH: 90°/--

BORE No: 6 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

Γ			Description	phic	Sampling			& In Situ Testing		Well
ā		Depth (m)	of Strata	Graphi Log	Type	Depth	sample	Results & Comments	Water	Construction Details
	-		FILL/Sandy CLAY: low plasticity, yellow-brown and grey, trace sandstone gravels, w <pl, fill<="" td=""><td></td><td>D/E</td><td>0.0</td><td>0,</td><td>PID<1ppm</td><td></td><td>-</td></pl,>		D/E	0.0	0,	PID<1ppm		-
-	-	0.45	FILL/Sandy CLAY: high plasticity, grey and yellow-brown, trace sandstone and ironstone gravels, trace organics, w>PL (wet), fill		D/E	0.5		PID<1ppm		
-~~	32	1			D/E	1.0 1.1		PID<1ppm		- 1
•	-				D/E	· 1.5 · 1.6		PID<1ppm		
-		2			D/E	2.0		PID<1ppm		-2
-	-	2.4 2.55	CLAY CL: medium plasticity, red-brown, trace sand, w <pl (wet), residual - From 2.5m: weathered sandstone with soil like properties</pl 		D/E	2.4		PID<1ppm		-
-		3	Bore discontinued at 2.55m- refusal on weathered sandstone							-3
ŀ										

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

CDE

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 34.77 AHD **EASTING:** 359114.96 **NORTHING:** 6327033.75 DIP/AZIMUTH: 90°/--

BORE No: 7 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

Г					Situ Testing					
	De	anth	Description	g		San		& In Situ Testing	e	Well
R		m)	of	Log	/be	pth	nple	Results &	Wat	Construction
			Strata	0	ŕ	Ľ	Sar	Comments		Details
			Silty SAND SM: medium grained, brown, trace rootlets,		D/E	0.0		PID<1ppm		
	F		trace clay (2% to 3%), moist			0.1				-
ŀ	-									-
ł										_
ļ		0.35	Sandy CLAV CL Jaw plasticity vallage brave and							
	ŀ		red-brown, trace ironstone gravels, w <pl, residual<="" td=""><td>1.1.</td><td>D/F</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td></pl,>	1.1.	D/F	0.4		PID<1ppm		-
ľ	-			1.1.		0.5				-
ł	-			V./.						-
ŀ				\././						
1				\././						-
[1			\ <u>.</u> /./.						-
ľ	-			·/./.						-
ł	-1	10		[· <u>/.</u> ·/.						-1
ŀ			Bore discontinued at 1.0m- limit of investigation							
	Ī									-
ſ	-									-
ŀ	-									-
ł										_
ļ										
	Ī									-
ſ	F									-
ŀ	-									-
-6										_
	F									-
ſ	-2									-2
ł	-									-
ŀ										
	[-
	F									-
ł	-									-
ł										-
ŀ										
	Ī									
ſ	ŀ									-
-8										
ŀ										
ļ										
	-3									-3
[ŀ									
ŀ	-									-
ŀ										
	[
	ŀ									
Ľ										

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

CDE

LOGGED: MJH

CASING:

CLIENT: PROJECT:

June Waldon

Proposed Residential Subdivision

LOCATION: 18 Gosford Road, Wyee

SURFACE LEVEL: 39.08 AHD **EASTING:** 359146.36 **NORTHING:** 6326981.34 DIP/AZIMUTH: 90°/--

BORE No: 8 PROJECT No: 104136.00 DATE: 22/10/2020 SHEET 1 OF 1

		Description	<u>.0</u>		San	Sampling & In Situ Testing				
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details	
	-	FILL/Clayey SAND: medium grained, brown, trace sandstone gravels, trace organics, dry, fill		D/E	0.0		PID<1ppm		-	
-	- - - 0.7	- At 0.6m: trace concrete (2 pieces <10mm), trace brick (1 piece) Sandy CLAY CL: low plasticity, yellow-brown and red-brown trace ironstone gravels. wsPL residual		D/E	0.5		PID<1ppm		-	
38	-1			D/E	0.9 1.0		PID<1ppm		-1	
36	- 1.1 	Bore discontinued at 1.1m- limit of investigation								

RIG: TOYOTA 4WD DRILLER: MJH TYPE OF BORING: 60mm Ø Dynamic Continous Push Tube Sampling WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56 H.

CDE

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 38.3 AHD **EASTING:** 359154.5 **NORTHING:** 6327004 PIT No: 101 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

		Description	Sampling & In Situ Te		& In Situ Testing		_					
RL	Depth (m)	of	Graph Log	Type	Jepth	ample	Results & Comments	Water	Dyna	mic Pen (blows	etromet per mm	:er Test ı)
-	-	FILL/Silty SAND: medium grained, brown, with rootlets, trace metal (1 piece rebar), trace brick (1 piece), moist, fill		D/E	0.1	<u>o</u>	PID<1ppm		-			
38	- 0.4 -	Clayey SAND (SC): medium grained, yellow brown and grey brown, moist, residual		D/E	0.5		PID<1ppm		-			
-	- 0.7	Pit discontinued at 0.7m- limit of investigation	<u>, /., /</u>								* * * * *	
											•	
-	- 1								-1			
	-								-			
37	-								-			
-	-								-			
	-											
-	-											
	-								-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND											
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)							
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)							

SURFACE LEVEL: 35.3 AHD **EASTING:** 359128.3 **NORTHING:** 6327045.2 PIT No: 102 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

		Description	<u>.0</u>		Sam	Sampling & In Situ Testing			n Dynamic Penetrometer Test			
RL	Depth (m)	of	raph Log	e	oth	ple	Results &	Vater	Dyn	amic Pe (blows	netromete s per mm)	r Test
	(,	Strata	Ū	Ţ	Dep	Sam	Comments	>	5	10	15	20
-	-	FILL/Silty SAND: medium grained, brown, trace glass (1 fragment), trace brick (1 fragment), trace rootlets, moist, fill		D/E	0.1		PID<1ppm		-			
35	- 0.3	Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.4		PID<1ppm		-			
ŀ	- 0.5	Pit discontinued at 0.5m- limit of investigation	1.7.7							:		
-	-								-			
ſ	-											
-	-1								-1			
-	-								-			
34	-								-			
-	-								-			
-	-								-			
-												
Ī	_								-			
											-	

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND											
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)							
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)							
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)							
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)							
D	Disturbed sample	⊳	Water seep	S	Standard penetration test							
E	Environmental sample	ž	Water level	V	Shear vane (kPa)							

SURFACE LEVEL: 36.2 AHD **EASTING:** 359141.4 **NORTHING:** 6327047.2

PIT No: 103 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	<u>.</u> 0	Sampling 8			ing & In Situ Testing		Dynamic Penetromator Tast			
Я	Depth (m)	of	Graph Log	Type	Jepth	ample	Results & Comments	Water	Dyna	amic Penet (blows pe	rometer T r mm)	est
- %	-	FILL/Silty SAND: medium grained, brown and mottled grey brown, trace glass (1 fragment), trace ironstone, moist, fill		D/E	0.1	S	PID<1ppm		-		15 2	
-	- 0.4	Clayey SAND (SC): medium grained, grey and slightly orange brown, moist, residual		D/E	0.5		PID<1ppm		-			• • • • • • • • • • • • • • • • • • •
-	-	Pit discontinued at 0.om- imit of investigation							-			· · · · · · · · · · · · · · · · · · ·
-	- 1								-1			• • • • • • • • • • • • • • • • • • • •
	-								-			· · · · · · · · · · · · · · · · · · ·
-	-								-			· · · · · · · · · · · · · · · · · · ·
-	-								-			· · · · · · · · · · · · · · · · · · ·
											_	

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

 SAMPLING & IN SITU TESTING LEGEND

 A
 Auger sample
 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 B
 Bulk sample
 P
 Piston sample
 PIL (A) Point load axial test Is(50) (MPa)

 BLK
 Block sample
 U,
 Tube sample (x mm dia.)
 PL(A) Point load diametral test Is(50) (MPa)

 D
 Disturbed sample
 W
 Water sample
 pp

 D
 Disturbed sample
 Water level
 S
 Standard penetration test

 E
 Environmental sample
 Water level
 V
 Shear vane (kPa)

SURFACE LEVEL: 37.4 AHD **EASTING:** 359162.1 **NORTHING:** 6327049.5 PIT No: 104 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Depth of g <th< th=""><th></th><th></th><th>Description</th><th>.<u></u></th><th></th><th>Sam</th><th>npling &</th><th>& In Situ Testing</th><th></th><th></th><th></th><th></th></th<>			Description	. <u></u>		Sam	npling &	& In Situ Testing				
Sity SAND (SM): medium grained, brown, with rootlets, iiii bit iiii bit bit bit bit bit bit bit bit	RL	Depth (m)	of Strata	Graph Log	Type	Depth	ample	Results & Comments	Wate	Dyna	amic Peneti (blows pe	er mm)
10.2 Clayey SAND (SC): metuum grained, grey and slightly orange brown, moist, residual Image: Clayey SAND (SC): metuum grained, grey and slightly orange brown, moist, residual 10.5 Pit discontinued at 0.5m-limit of investigation Image: Clayey SAND (SC): metuum grained, grey and slightly orange brown, moist, residual 10.5 Pit discontinued at 0.5m-limit of investigation Image: Clayey SAND (SC): metuum grained, grey and slightly orange brown, moist, residual 10.5 Pit discontinued at 0.5m-limit of investigation Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual 10.5 Pit discontinued at 0.5m-limit of investigation Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual 11 Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual 11 Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual 11 Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual 11 Image: Clayey SanD (SC): metuum grained, grey and slightly orange brown, moist, residual Image: Clayey SanD (SC): metuum grained, grey and (SC): metuum grained, grey and grained, grey	_		Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1	S	PID<1ppm		-		
1 0.5 Pit discontinued at 0.5m- limit of investigation 1 - 1 - 2 -1 -1 - -1 - -2 - -3 - -4 - -5 - -1	37		Clayey SAND (SC): medium grained, grey and slightly orange brown, moist, residual		D/E	0.4		PID<1ppm		-		
		· 0.5	Pit discontinued at 0.5m- limit of investigation									

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAM	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 37.7 AHD **EASTING:** 359157.9 **NORTHING:** 6327028.5 PIT No: 105 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

		Description	. <u>ಲ</u>		Sam	pling 8	& In Situ Testing					
Ч	Depth (m)	of	raph Log	ed.	pth	nple	Results &	Nater	Dynamic (bl	Penetro ows per	ometer [·] mm)	Test
L		Strata	G	Ту	De	San	Comments	_	5	10	15	20
-	- 0.3	Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1		PID<1ppm		-			
		Clayey SAND (SC): medium grained, yellow brown and grey brown, moist, residual	(.,,,) (.,,,)								:	
ŀ	- 0.4	Pit discontinued at 0.4m- limit of investigation	<u> </u>	-D/E-	-0.4-		PID<1ppm-				<u>.</u>	<u> </u>
	- 1								-1			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND									
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)					
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)					
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)					
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)					
D	Disturbed sample	⊳	Water seep	S	Standard penetration test					
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)					

SURFACE LEVEL: 36.4 AHD **EASTING:** 359136.6 **NORTHING:** 6327026 PIT No: 106 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

		Description	.0		San	npling &	& In Situ Testing					
R	Depth (m)	of	Graphi Log	Lype	Jepth	ample	Results & Comments	Water	Dynamic (bl	Penetro	meter ⁻ mm)	Test
-	-	FILL/Silty SAND: medium grained, brown, trace brick (1 piece), trace particle board (2 pieces), moist, fill		D/E	0.1	оў QA3	PID<1ppm		-	10 1	15	20
-	- 0.2	Clayey SAND (SC): medium grained, yellow brown and grey brown, moist, residual		D/E	0.3		PID<1ppm		-			
-98	- 0.4 - - - - -	Pit discontinued at 0.4m- limit of investigation							1			
	-								-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAME	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 33.1 AHD **EASTING:** 359080.4 **NORTHING:** 6327008.5 DIP/AZIMUTH: 90°/--

BORE No: 107 PROJECT No: 104136.01 DATE: 21/10/2021 SHEET 1 OF 1

		Description	lic		Sam	pling &	& In Situ Testing	5	Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
- 33	-	FILL/SANDY CLAY: high plasticity, yellow brown and brown, trace sandstone and conglomerate gravels, w>PL, fill		D/E	0.1		PID<1ppm		-
-	-			D/E	0.7		PID<1ppm		-
- 33-	- 1 1.0	CLAY (CL): medium plasticity, grey and yellow brown, w=PL, residual		D/E	1.2		PID<1ppm		-1
-	- 1.7	Pero discontinued at 4.7m limit of investigation		D/E	1.6		PID<1ppm		-
-	-	bore discontinued at 1.7m- limit of investigation							-

RIG: UTILITY MOUNTED RIG DRILLER: MJH TYPE OF BORING: 60mm diameter Continuous Push Tube Sampler WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56H.

LOGGED: MJH

CASING:

PROJECT:

CLIENT:

Proposed Residential Subdivision LOCATION: 18 Gosford Road, Wyee

June Waldon

SURFACE LEVEL: 32.3 AHD **EASTING:** 359072.9 **NORTHING:** 6327027.1 **DIP/AZIMUTH:** 90°/-- BORE No: 108 PROJECT No: 104136.01 DATE: 21/10/2021 SHEET 1 OF 2

		Description	<u>.</u>		Sam	npling &	& In Situ Testing	_	Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
-	-	FILL/Gravelly Sandy CLAY: medium plasticity, medium to coarse grained, yellow brown and brown, gravels subrounded sandstone, w=PL, (wet), fill		D/E	0.1		PID<1ppm		-
	-			D/E	0.5		PID<1ppm		-
-	- 1			D/E	1.0		PID<1ppm		-1
	-								-
-	- 1.7	Sandy CLAY (CL): poorly graded pale grey, with gravels conglomerate, w <pl, residual<="" td=""><td></td><td>D/E</td><td>1.8</td><td></td><td>PID<1ppm</td><td></td><td>-</td></pl,>		D/E	1.8		PID<1ppm		-
			· · · · · · · · · · · · · · · · · · ·	D/E	_2.0_		PID<1ppm		

 RIG:
 UTILITY MOUNTED RIG
 DRILLER:
 MJH

 TYPE OF BORING:
 60mm diameter Continuous Push Tube Sampler

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 Location coordinates are in MGA94 Zone 56H.

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 32.3 AHD **EASTING:** 359072.9 **NORTHING:** 6327027.1 DIP/AZIMUTH: 90°/--

BORE No: 108 PROJECT No: 104136.01 DATE: 21/10/2021 SHEET 2 OF 2

Γ		Description	U		San	npling &	& In Situ Testing		Well	
R	Depth	of	aphic -og	ð	÷		Boguita 8	/ater	Constructio	n
	(11)	Strata	Ū,	Тур	Dep	Sam	Comments	5	Details	
-	-	Sandy CLAY (CL): poorly graded pale grey, with gravels conglomerate, w <pl, <i="" residual="">(continued)</pl,>							-	
İ	- 2.2	Bore discontinued at 2.2m- limit of investigation								
	,									
ſ										
ļ	-								-	
ł	-								-	
ł	-								-	
									-	
ł	-								-	
ł	-								-	
ſ	-3								-3	
ļ	-								-	
ł	-								-	
-8	1-								-	
	_								-	
ł	-								-	
ł	-								-	
ŀ	-									
ł	ŀ								-	
L	L			I	I					

RIG: UTILITY MOUNTED RIG DRILLER: MJH TYPE OF BORING: 60mm diameter Continuous Push Tube Sampler WATER OBSERVATIONS: No free groundwater observed REMARKS: Location coordinates are in MGA94 Zone 56H.

A Auger sample B Bulk sample BLK Block sample

CDE

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 32.4 AHD **EASTING:** 359080.1 **NORTHING:** 6327040 **DIP/AZIMUTH:** 90°/-- BORE No: 109 PROJECT No: 104136.01 DATE: 21/10/2021 SHEET 1 OF 1

Γ		Description	. <u>ಲ</u>		Sam	ipling 8	& In Situ Testing		Well
RL	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Construction Details
-	-	FILL/Sandy CLAY: low plasticity, orange brown and red brown, trace gravels subrounded conglomerate, trace organics, w <pl, fill<="" td=""><td></td><td>D/E</td><td>0.1</td><td></td><td>PID<1ppm</td><td></td><td>-</td></pl,>		D/E	0.1		PID<1ppm		-
	-			D/E	0.5		PID<1ppm		-
-	- 0.8 1 -	Sandy CLAY (CL): low plasticity, coarse grained, pale grey and red brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>1.0</td><td></td><td>PID<1ppm</td><td></td><td>-1</td></pl,>		D/E	1.0		PID<1ppm		-1
31	-	- from 1.3m: red brown and pale grey - from 1.35m: trace ironstone							-
-	- 1.6	Bore discontinued at 1.6m- limit of investigation		⊢D/E−	-1.6-		PID<1ppm		-

 RIG:
 UTILITY MOUNTED RIG
 DRILLER:
 MJH

 TYPE OF BORING:
 60mm diameter Continuous Push Tube Sampler

 WATER OBSERVATIONS:
 No free groundwater observed

 REMARKS:
 Location coordinates are in MGA94 Zone 56H.

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

LOGGED: MJH

SURFACE LEVEL: 37.7 AHD **EASTING:** 359176 **NORTHING:** 6327061.2 PIT No: 110 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

ſ			Description	. <u>0</u>		Sam	pling &	& In Situ Testing		_			
l	뉟	Depth (m)	of	raph Log	be	pth	aldr	Results &	Nate	Dynam	nic Pene (blows p	etrometer er mm)	r lest
		()	Strata	U	Ту	De	San	Comments		5	10	15	20
-	-		Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1		PID<1ppm		-			
-	-	0.3	Clayey SAND (SC): medium grained, yellow brown and grey brown, moist, residual		D/E	0.3		PID<1ppm		-			
ſ		0.0	Pit discontinued at 0.5m- limit of investigation										
-	37	1								- 1			
-	-									-			
	- 36									-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 36.7 AHD **EASTING:** 359155 **NORTHING:** 6327062.5 PIT No: 111 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description of Strata		Sampling			& In Situ Testing					
RL	Depth (m)			Type	Depth	ample	Results & Comments	Wate	Uynamic Penetrometer Test (blows per mm)			
-	-	FILL/Silty SAND: medium grained, grey, moist, fill		D/E	0.1	<u></u>	PID<1ppm		-		<u></u>	
-	- 0.2	Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.3</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.3		PID<1ppm		-			
-	- 0.5	Pit discontinued at 0.5m- limit of investigation	<u> </u>								•	
- 99	-								-			
-	- 1								-1			
	-								· · · · · · · · · · · · · · · · · · ·			
-	-								-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND										
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)						
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	ž	Water level	V	Shear vane (kPa)						

SURFACE LEVEL: 35.1 AHD **EASTING:** 359132.8 **NORTHING:** 6327064.6 PIT No: 112 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

		Description	.u	Sampling & In Situ Testing								
RL	Depth (m)	of		e	bth	ple	Results &	Water	Dynamic Penetrometer Test (blows per mm)			
L	()	Strata	U	ту	De	San	Comments		5	10 1	5 2	D
35-	-	FILL/Silty SAND: medium grained, grey, trace glass (2 pieces), trace ironstone, moist, fill		D/E	0.1	QA2	PID<1ppm		-			
-	- 0.2	Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, with gravels ironstone, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.3</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td>· · · · · · ·</td><td></td><td></td></pl,>		D/E	0.3		PID<1ppm		-	· · · · · · ·		
ŀ	- 0.4	Pit discontinued at 0.4m- limit of investigation	1.7.7						•	-		
	- - - - -								-1			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

SAMPLING & IN SITU TESTING LEGEND											
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)						
В	Bulk sample	Р	Piston sample	PL(A) Point load axial test Is(50) (MPa)						
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)						
С	Core drilling	w	Water sample	pp	Pocket penetrometer (kPa)						
D	Disturbed sample	⊳	Water seep	S	Standard penetration test						
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)						

SURFACE LEVEL: 33.1 AHD **EASTING:** 359103.5 **NORTHING:** 6327067.3 PIT No: 113 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	<u>.</u>		San	npling	& In Situ Testing		_				
R	Depth (m)	of	Graph Log	Type	Jepth	ample	Results & Comments	Wate	Dyna	amic Pe (blows	s per m	neter I nm)	est
-8	-	FILL/Gravelly Clayey SAND: poorly graded, grey and brown, gravels subrounded ironstone, with rootlets, moist, fill		D/E	0.1	0	PID<1ppm		-			2	
-	0.25	Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td><td></td></pl,>		D/E	0.4		PID<1ppm		-				
ł	- 0.6	Pit discontinued at 0.6m- limit of investigation	<u> </u>					\vdash		 	: :		
-	-								-				
ł	-								-				•
-	- 1								-1				-
-8	-												
-	-												
	-												
-	-												
-	-									•			
	_												
	-												

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPI	LING	6 & IN SITU TESTING I	_EGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 31.2 AHD **EASTING:** 359072 **NORTHING:** 6327071.2 PIT No: 114 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ			Description	. <u>ಲ</u>		San	npling &	& In Situ Testing					
RL	De (n	pth n)	of	raph Log	ed.	pth	nple	Results &	Nate	Dynami (t	Penet lows pe	romete er mm)	er lest
	Ì	,	Strata	G	ту	De	San	Comments	-	5	10	15	20
31	-		Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1		PID<1ppm		-			
-	-	0.3	Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td>•</td><td></td></pl,>		D/E	0.4		PID<1ppm		-		•	
	1	0.5	Pit discontinued at 0.5m- limit of investigation										

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMP	LING	& IN SITU TESTING	LEGE	ND
Α	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 30.3 AHD **EASTING:** 359065 NORTHING: 6327093.3

PIT No: 115 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ			Description	<u>ں</u> . Samplin		Sampling & In Situ Testing				b Dynamic Penetrometer Test			
ā	Uep (m	th)	of	Graph Log	Type	Depth	ample	Results & Comments	Water	Dyr	namic Pe (blow	enetrome s per mi	eter Test m)
-	-		Strata Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1	ة <1ppm			-	5 10 		
-	-	0.3	Sandy CLAY (CL): medium plastictiy, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.5</td><td><1ppm</td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.5	<1ppm			-			
-	1	0.0	Pit discontinued at 0.6m- limit of investigation							-			
	- - -									-			
-	-									-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

REMARKS:

CLIENT:

PROJECT:

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

 SAMPLING & IN SITU TESTING LEGEND

 G
 Gas sample
 PID
 Photo ionisation detector (ppm)

 P
 Piston sample
 PI(A) Point load axial test Is(50) (MPa)

 U
 Tube sample (x mm dia.)
 PL(D) Point load diametral test Is(50) (MPa)

 W
 Water sample pp
 Pocket penetrometer (kPa)

 W
 Water seep
 S
 Standard penetration test

 Water level
 V
 Shear vane (kPa)

 A Auger sample B Bulk sample BLK Block sample C Core drilling D Disturbed sample E Environmental sample

SURFACE LEVEL: 31.8 AHD **EASTING:** 359092.7 **NORTHING:** 6327089.4 PIT No: 116 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ				Description	. <u>u</u>		Sam	npling &	& In Situ Testing	_	_			
ā		Deptł (m)	h	of	iraph Log	be	pth	nple	Results &	Nate	Dynam	c Pene blows p	tromete er mm)	er Lest
		. ,		Strata	G	ту	De	San	Comments	_	5	10	15	20
-	-			Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1		PID<1ppm		-			
-	-	0).3	Gravelly Sandy CLAY (GC): medium plasticity, yellow brown and red brown, gravels subrounded ironstone, w <pl, (munmorah="" conglomerate)<="" residual="" th=""><th></th><th>D/E</th><th>0.4</th><th></th><th>PID<1ppm</th><th></th><th>-</th><th></th><th></th><th></th></pl,>		D/E	0.4		PID<1ppm		-			
		1	.5	Pit discontinued at 0.5m- limit of investigation										

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 33.9 AHD **EASTING:** 359121.8 **NORTHING:** 6327085.3 PIT No: 117 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	<u>.</u>		Sam	pling &	& In Situ Testing	_				
ā	Dept (m)	oth n) of Strata	Graph Log	Type	Depth	ample	Results & Comments	Wate	Dynamic (b	; Penetro lows per	meter Les mm)	st
-	-	Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1	0	PID<1ppm		-			
-	- (0.3 Gravelly Sandy CLAY (GC): medium plasticity, yellow brown and red brown, gravels subrounded ironstone, w <pl, (munmorah="" conglomerate)<="" residual="" td=""><td></td><td>D/E</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.4		PID<1ppm		-			
	-	Pit discontinued at 0.5m- limit of investigation										
-6	3- - 1								-1			
-	-											
-	-											
-6	27								-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 35.4 AHD **EASTING:** 359145.1 **NORTHING:** 6327084.5 PIT No: 118 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	. <u>0</u>		Sam	pling a	& In Situ Testing					
R	Depth (m)	of	raph Log	e	oth	ple	Results &	Vate	Dynan	ic Peneti (blows pe	·ometer ` er mm)	Test
		Strata	Ū	Ту	Del	Sam	Comments	>	5	10	15	20
		Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil	 · · · · · · · ·	D/E	0.05	QA1	PID<1ppm					•
-	- 0.1	Sandy CLAY (CL): medium plastictiy, red brown and orange brown, w <pl, residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>							-			
-	-		·/·/· ·/·/·						-			•
ľ	-		·/ · / · · / · / ·	D/E	0.3		PID<1ppm		-			•
-22	- 0.4	Pit discontinued at 0.4m- limit of investigation	<u>/·/·</u>									:
f	-											:
												÷
ŀ	-								-			:
												÷
ł	-											:
											:	÷
ł	-											
												÷
	[[:
	-								-		:	÷
												:
ł	-											:
ł	ŀ										•	
												:
-26	-											÷
	_											:
ŀ	-								r i			
ł	ŀ								ŀ			:
												÷
t	ŀ										•	:
	ļ							1				-
L												:

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAM	LING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	ž	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 36.6 AHD **EASTING:** 359165.6 **NORTHING:** 6327080.2 PIT No: 119 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

		Description	ic	Sampling & In Situ Testing			-	5	Dynamic Penetrometer Test			
R	Depth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Dynar 5	nic Penetro (blows per 10 1	meter I mm) 5 20	est
-	-	Sandy CLAY (CL): medium plasticity, orange brown and grey brown, trace gravels ironstone, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.1</td><td>5</td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.1	5	PID<1ppm		-			
	- 0.3	Pit discontinued at 0.3m- limit of investigation	<u>v</u> · / ·									
-	- 1								-1			
35	-											

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND													
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)									
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

SURFACE LEVEL: 34.3 AHD **EASTING:** 359139.9 **NORTHING:** 6327103.5 PIT No: 120 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	.u	Sampling & In Situ Testing								
R	Depth (m)	of	aphi	e	ţ	ple	Results &	Vater	Dynami (I	c Penetro plows per	meter Te mm)	est
	(11)	Strata	ତି –	Тур	Dep	Sam	Comments	5	5	10	15 20	
	- 0.1	Silty SAND (SM): medium grained, brown, with rootlets, with gravels ironstone, moist, topsoil	· · · · · · · · · · · · · · · · · · ·	D/E	0.05		PID<1ppm		-			
-	-	Gravelly Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, gravels ironstone, w=PL, residual							-			
ř	- 0.3	Pit discontinued at 0.3m- limit of investigation	0.73.2	-D/E-	-0.3-		PID<1ppm					
-	1								1			
	-								-			
-	-								-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAM	PLING	& IN SITU TESTING	LEGE	ND
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test Is(50) (MPa)
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)
D	Disturbed sample	⊳	Water seep	S	Standard penetration test
E	Environmental sample	¥	Water level	V	Shear vane (kPa)

SURFACE LEVEL: 32.2 AHD **EASTING:** 359110.5 **NORTHING:** 6327108.2 PIT No: 121 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

			Description	. <u>0</u>	ਤੂSampling &			& In Situ Testing	L				
R	Dept (m)	th)	of	raph Log	be	pth	nple	Results &	Nate	Dyi	namic Per (blows	per mm	er Test)
	. ,	,	Strata	U	Тy	De	San	Comments	_	ŧ	5 10	15	20
-8-	-		FILL/Silty SAND: fine grained, brown, with organics, with gravels ironstone, trace clay, moist, fill		D/E	0.1		PID<1ppm		-			
	-	0.3	 at 0.2m: plastic sheeting, most likely blinding layer used for irrigation or planting purposes 							_			
-	-	0.0	Gravelly Sandy CLAY (GC): medium plasticity, yellow brown and red brown, gravels subrounded ironstone, w <pl, (munmorah="" conglomerate)<="" residual="" td=""><td></td><td>D/E</td><td>0.4</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.4		PID<1ppm		-			
-	-	0.5	Pit discontinued at 0.5m- limit of investigation	107									
-	1									- - -			
31	-									-			
-										-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND													
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)) Point load diametral test Is(50) (MPa)									
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

SURFACE LEVEL: 30.3 AHD **EASTING:** 359078.4 **NORTHING:** 6327113.2 PIT No: 122 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	. <u>0</u>		Sam	pling 8	& In Situ Testing					
RL	Depth	of	raph Log	e	oth	ple	Results &	Vater	Dynar	nic Penet (blows pe	rometer er mm)	Test
	()	Strata	Ū	Ty	Del	San	Comments		5	10	15	20
		Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.05		PID<1ppm				•	•
30	3-	Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td>D/E</td><td>0.3</td><td></td><td>PID<1ppm</td><td></td><td>-</td><td></td><td></td><td></td></pl,>		D/E	0.3		PID<1ppm		-			
-	- 0.5								-			
-	-	Fit discontinued at 0.5m- limit of investigation							-			
-	-								-			
-	-								-			
-	- 1								-1			
-	-								-			
29	<u>}</u> -								-			
-	-								-			
-	-								-			
-	-								-			
-	-								-			
												;

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND													
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)									
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

SURFACE LEVEL: 29.1 AHD **EASTING:** 359071.9 **NORTHING:** 6327137.9 PIT No: 123 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	. <u>e</u>		Sam	npling &	& In Situ Testing	_	_				
ā	Uepth (m)	of Strata	Graph Log	Type	Depth	Sample	Results & Comments	Wate	Dyna 5	amic Pe (blow	enetron	neter I nm) 5 2	est
		Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil	· · · · · ·	D/E	0.05	05	PID<1ppm						
-9	}- 0.1 -	SAND (SP): coarse grained, yellow brown, trace clay, trace organics, moist (possible FILL)							-				· · · · · · · · · · · · · · · · · · ·
-	-			D/E	0.3		PID<1ppm		-				· · · · · · · · · ·
-	- 0.5	Sandy CLAY (CL): medium plasticity, yellow brown, w <pl, residual<="" td=""><td></td><td></td><td>0.0</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td></pl,>			0.0				-				
-	- 0.0	Pit discontinued at 0.6m- limit of investigation		-0/2-	0.0		PIDS Ippin		-				
-	-								-				· · · · ·
-													•
- 20	- 1 3-								-1				
-	-								-				•
-	-								-				
-	-								-				•
-	-								-				,
-	-								-				,

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND													
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D) Point load diametral test Is(50) (MPa)									
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
E	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

SURFACE LEVEL: 30.8 AHD **EASTING:** 359103.6 **NORTHING:** 6327133.1 PIT No: 124 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

ſ			Description	<u>.0</u>		Sam	pling a	& In Situ Testing					
ā		Depth (m)	of	Graph Log	Type	Jepth	ample	Results & Comments	Water	Dyna	amic Pen (blows	etromete per mm)	er Test
	_	0.1	Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil	· · · · · · · · · · · · · · · · · · ·	D/E	0.05	ŭ	PID<1ppm			10	15	20
	-		Sandy CLAY (CL): medium plasticity, yellow brown and orange brown, w <pl, residual<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>-</td><td></td><td></td><td></td></pl,>							-			
	-	0.4			D/E	0.3		PID<1ppm					
	-	0.1	Pit discontinued at 0.4m- limit of investigation										
	-												
	30									-			
-	-									-			
-	- 1									-1			
	-												
	-											•	
	-												
	-												
	- 29												
	-									-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND													
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)									
в	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)									
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)									
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)									
D	Disturbed sample	⊳	Water seep	S	Standard penetration test									
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)									

SURFACE LEVEL: 32.7 AHD **EASTING:** 359129.8 **NORTHING:** 6327129.2 PIT No: 125 PROJECT No: 104136.01 DATE: 19/10/2021 SHEET 1 OF 1

Γ		Description	. <u>0</u>	Sampling & In Situ Testing			& In Situ Testing					
RL	Deptr (m)	of	Graphi Log	Type	Jepth	ample	Results & Comments	Water	Dynami (I	c Penetro plows per	ometer T r mm)	Test
-	-	Silty SAND (SM): medium grained, brown, with rootlets, moist, topsoil		D/E	0.1	S	PID<1ppm		-		15 2	20
-	- 0	³ Gravelly Sandy CLAY (GC): medium plasticity, yellow brown and red brown, gravels subrounded ironstone, w <pl, (munmorah="" conglomerate)<="" p="" residual=""></pl,>		D/E	0.4		PID<1ppm		-			
32	3-	Pit discontinued at 0.5m- limit of investigation							-			
-	-								-			
-	- 1								-1			
-	-								-			•
34	-								-			
-	-								-			

RIG: HAND TOOLS

LOGGED: MJH

SURVEY DATUM: MGA94 Zone 56H

WATER OBSERVATIONS: No free groundwater observed

June Waldon

LOCATION: 18 Gosford Road, Wyee

Proposed Residential Subdivision

CLIENT: PROJECT:

REMARKS:

	SAMPLING & IN SITU TESTING LEGEND					
А	Auger sample	G	Gas sample	PID	Photo ionisation detector (ppm)	
В	Bulk sample	Р	Piston sample	PL(A)	Point load axial test Is(50) (MPa)	
BLK	Block sample	U,	Tube sample (x mm dia.)	PL(D)	Point load diametral test ls(50) (MPa)	
С	Core drilling	Ŵ	Water sample	pp	Pocket penetrometer (kPa)	
D	Disturbed sample	⊳	Water seep	S	Standard penetration test	
Е	Environmental sample	Ŧ	Water level	V	Shear vane (kPa)	
						-

Appendix E

Site Assessment Criteria

Appendix E Site Assessment Criteria

E1.0 Introduction

E1.1 Guidelines

The following key guidelines were consulted for deriving the site assessment criteria (SAC):

- NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).
- CRC CARE Health screening levels for petroleum hydrocarbons in soil and groundwater (CRC CARE, 2011).

E1.2 General

The SAC applied in the current investigation are informed by the CSM which identified human and environmental receptors to potential contamination at the site. Analytical results were assessed (as a Tier 1 assessment) against the SAC comprising primarily the investigation and screening levels of Schedule B1 of NEPC (2013).

The following inputs are relevant to the selection and/or derivation of the SAC:

- Land use: residential
 - Corresponding to land use category 'A', residential with garden / accessible soil (home grown produce <10% fruit and vegetable intake, (no poultry));
- Soil type: sand (based on dominant soil type see Logs, Appendix D).

E2.0 Soils

E2.1 Health Investigation and Screening Levels

The generic health investigation levels (HIL) and health screening levels (HSL) are considered to be appropriate for the assessment of human health risk via all relevant pathways of exposure associated with contamination at the site. The adopted soil HIL and HSL for the contaminants of concern are in Table E1 and Table E2.

Contaminant	HIL-A		
Metals			
Arsenic	100		
Cadmium	20		
Chromium (VI)	100		
Copper	6000		
Lead	300		
Mercury (inorganic)	40		
Nickel	400		
Zinc	7400		
РАН			
B(a)P TEQ	3		
Total PAH	300		
ОСР			
DDT+DDE+DDD	240		
Aldrin and dieldrin	6		
Chlordane	50		
Endosulfan	270		
Endrin	10		
Heptachlor	6		
НСВ	10		
Methoxychlor	300		
OPP			
Chlorpyriphos	160		

Table E1: Health Investigation Levels (mg/kg)

Contaminant	HIL-A	
РСВ		
РСВ	1	

Table E2: Health Screening Levels (mg/kg)

Contaminant	HSL-A&B
SAND	0 m to <1 m
Benzene	0.5
Toluene	160
Ethylbenzene	55
Xylenes	40
Naphthalene	3
TRH F1	45
TRH F2	110

Notes: TRH F1 is TRH C₆-C₁₀ minus BTEX

TRH F2 is TRH >C10-C16 minus naphthalene

The soil saturation concentration (Csat) is defined as the soil concentration at which the porewater phase cannot dissolve any more of an individual chemical. The soil vapour that is in equilibrium with the porewater will be at its maximum. If the derived soil HSL exceeds Csat, a soil vapour source concentration for a petroleum mixture could not exceed a level that would results in the maximum allowable vapour risk for the given scenario. For these scenarios, no HSL is presented for these chemicals and the HSL is shown as 'not limiting' or 'NL'

The HSL for direct contact derived from CRC CARE (2011) are in Table E3.

Table E3: Health Screening Levels for Direct Contact (mg/kg)

Contaminant	DC HSL-A	
Benzene	100	
Toluene	14 000	
Ethylbenzene	4500	
Xylenes	12 000	
Naphthalene	1400	
TRH F1	4400	
TRH F2	3300	
TRH F3	4500	
TRH F4	6300	

Notes: TRH F1 is TRH C_6 - C_{10} minus BTEX TRH F2 is TRH > C_{10} - C_{16} minus naphthalene

E2.2 Asbestos in Soil

The HSL for asbestos in soil are based on likely exposure levels for different scenarios published in NEPC (2013) for the following forms of asbestos:

- Bonded asbestos containing material (ACM); and
- Fibrous asbestos and asbestos fines (FA and AF).

The HSL are in Table E4.

Table E4: Health Screening Levels for Asbestos

Form of Asbestos	HSL-A
ACM	0.01%
FA and AF	0.001%
FA and AF and ACM	No visible asbestos for surface soil *

Notes: Surface soils defined as top 10 cm.

* Based on site observations at the sampling points and the analytical results of surface samples.

E2.3 Ecological Investigation Levels

Ecological investigation levels (EIL) and added contaminant limits (ACL), where appropriate, have been derived in NEPC (2013) for arsenic, copper, chromium (III), nickel, lead, zinc, DDT and naphthalene. The adopted EIL, derived using the interactive (excel) calculation spreadsheet on the NEPM toolbox website are shown in Table E6, with inputs into their derivation shown in Table E5.

Variable	Input	Rationale
Age of contaminants	"Aged" (>2 years)	Given the likely source of soil contaminants (i.e. historical site use / fill), the contamination is considered as "aged"
рН	7.2	Based on the average of two samples (DP, 2020)
CEC	5.3 cmol _c /kg	Based on the average of two samples (DP, 2020)
Clay content	1%	Consistent with a 'sand' soil type
Traffic volumes	low	The site is in an area of low traffic volume
State / Territory	NSW	The site is located in NSW

Table E5: Inputs to the Derivation of the Ecological Investigation Levels

Table E6: Ecological Investigation Levels (mg/kg)

Contaminant	EIL-A-B-C
Metals	
Arsenic	100
Copper	120
Nickel	40
Chromium III	190
Lead	1100
Zinc	320
РАН	
Naphthalene	170
OCP	
DDT	180

Notes: EIL-AES area of ecological significance

EIL-A-B-C urban residential and public open space

E2.4 Ecological Screening Levels

Ecological screening levels (ESL) are used to assess the risk of selected petroleum hydrocarbon compounds, BTEX and benzo(a)pyrene to terrestrial ecosystems. The adopted ESL are shown in Table E7.

Table E7:	Ecological	Screening	Levels	(mg/kg)
-----------	------------	-----------	--------	---------

Contaminant	Soil Type	EIL-A-B-C
Benzene	Coarse	50
Toluene	Coarse	85
Ethylbenzene	Coarse	70
Xylenes	Coarse	105
TRH F1	Coarse/ Fine	180*
TRH F2	Coarse/ Fine	120*
TRH F3	Coarse	300
TRH F4	Coarse	2800
B(a)P	Coarse	0.7

Notes: ESL are of low reliability except where indicated by * which indicates that the ESL is of moderate reliability

TRH F1 is TRH C_6 - C_{10} minus BTEX

TRH F2 is TRH >C_{10}-C_{16} including naphthalene

EIL-A-B-C urban residential and public open space

E2.5 Management Limits

In addition to appropriate consideration and application of the HSL and ESL, there are additional considerations which reflect the nature and properties of petroleum hydrocarbons, including:

- Formation of observable light non-aqueous phase liquids (LNAPL);
- Fire and explosion hazards;
- Effects on buried infrastructure eg: penetration of, or damage to, in-ground services.

The adopted management limits are in Table E8.

Table E8: Management Limits (mg/kg)

Contaminant	Soil Type	ML-A-B-C
TRH F1	Coarse	700
TRH F2	Coarse	1000
TRH F3	Coarse	2500
TRH F4	Coarse	10 000

Notes: TRH F1 is TRH C₆-C₁₀ including BTEX

,

TRH F2 is TRH >C $_{10}$ -C $_{16}$ including naphthalene ML-A-B-C residential, parkland and public open space

Appendix F

Field Work Methodology

Appendix F Field Work Methodology

F1.0 Guidelines

The following key guideline was consulted for the field work methodology:

F1.0 NEPC National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Field Work

Field work was undertaken on 19 and 21 October 2021 by a DP engineering geologist. The field work comprised the excavation of 22 test pits (Pits 101 to 106 and Pits 110 to 125) using hand tools, and drilling of three boreholes (Bores 107 to 109) using a utility mounted push tube drill rig to depths terminating in natural soils.

Soil Sampling

Soil sampling was carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprised:

- Collection of soil samples directly from the hand tools or the push tube at the nominated sample depth;
- Use of disposable nitrile gloves when collecting all samples. Gloves were replaced prior to the collection of each sample thereby minimising potential for cross-contamination;
- Samples collected for laboratory analysis were transferred into a new laboratory prepared glass jar, with minimal headspace, and sealed with a Teflon lined lid. Each jar was individually sealed to reduce the potential for cross contamination during transportation to the laboratory;
- Collection of ~500 ml samples for FA and AF analysis;
- Collection of 10% replicate samples for QC purposes;
- Collection of replicate samples in zip-lock bags for PID screening;
- Sample containers were labelled with individual and unique identification including project number, sample ID, depth and date of sampling;
- Placement of sample containers and bags into a cooled, insulated and sealed container for transport to the laboratory; and

• Use of chain of custody documentation so that sample tracking and custody could be cross-checked at any point in the transfer of samples from the field to the laboratory. Copies of completed chain of custody forms are included in Appendix I.

Field Testing

Field testing was carried out in accordance with DP standard operating procedures. The general sampling and sample management procedures comprised:

PID Field Test

- Calibrate the PID with isobutylene gas at 100 ppm and with fresh air prior to commencement of each successive day's field work;
- Allow the headspace in the PID zip-lock bag samples to equilibrate; and
- Screen using the PID.

Appendix G

Quality Assurance / Quality Control

Appendix G Quality Assurance and Quality Control

G1.0 Field and Laboratory Data Quality Assurance and Quality Control

The field and laboratory data quality assurance and quality control (QA/QC) procedures and results are summarised in the following Table G1. Reference should be made to the field work methodology and the laboratory results / certificates of analysis for further details. The relative percentage difference (RPD) results, along with the other field QC samples are included at the end of this appendix. Reference should also be made to Appendix H of DP (2020); however, based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained from DP (2020) are reliable and useable for this assessment.

ltem	Evaluation / Acceptance Criteria	Compliance
Analytical laboratories used	NATA accreditation for the analyses performed	C*
Holding times	Various based on type of analysis	С
Intra-laboratory replicates	5% of primary samples (i.e. 1 sample per 20 samples collected); <30% RPD	C PC (see Section G1.1)
Inter-laboratory replicates	5% of primary samples (i.e. 1 sample per 20 samples collected); <30% RPD	C PC (see Section G1.1)
Rinsates	1 per sampling event; <pql< td=""><td>С</td></pql<>	С
Laboratory / Reagent Blanks	1 per batch; <pql< td=""><td>С</td></pql<>	С
Matrix Spikes	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Surrogate Spikes	All organics analysis; 70-130% recovery (inorganics); 60- 140% recovery (organics)	С
Control Samples	1 per lab batch; 70-130% recovery (inorganics); 60-140% recovery (organics)	С
Standard Operating Procedures (SOP)	Adopting SOP for all aspects of the sampling field work	С

Table G1: Field and Laboratory Quality Control

Notes:

C = compliance; PC = partial compliance; NC = non-compliance

* DP notes that the asbestos analysis is reported outside Envirolab's scope of NATA accreditation

G1.1 Replicate Analysis

The results from the replicate analysis (RPD values) indicated in bold in Table QA1 were outside the acceptable range. All other replicate results were within the acceptable range. However, the results outside the acceptable range are not considered to be of concern because:

- In many cases, the high RPD value reflects small differences between small absolute values;
- Replicates, rather than homogenised duplicates, were used to minimise risk of volatile loss, hence greater variability can be expected;
- Most of the recorded concentrations were relatively close to the PQL and, so the variability observed was unlikely to result in a false negative result when comparing concentrations against the SAC.

In summary, the QC data is determined to be of sufficient quality to be considered acceptable for the assessment.

G2.0 Data Quality Indicators

The reliability of field procedures and analytical results was assessed against the following data quality indicators (DQIs) as outlined in NEPC *National Environment Protection (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM]* (NEPC, 2013):

- Completeness: a measure of the amount of usable data from a data collection activity;
- Comparability: the confidence (qualitative) that data may be considered to be equivalent for each sampling and analytical event;
- Representativeness: the confidence (qualitative) of data representativeness of media present onsite;
- Precision: a measure of variability or reproducibility of data; and
- Accuracy: a measure of closeness of the data to the 'true' value.

Data Quality Indicator	Method(s) of Achievement			
Completeness	Stratified sampling was undertaken targeting PAEC 1 to PAEC 3. Within each PAEC a systematic sampling pattern was adopted.			
	Preparation of borehole/ test pit logs, sample location plan and chain of custody records.			
	Laboratory sample receipt information received confirming receipt of samples intact and appropriateness of the chain of custody.			
	Samples analysed for contaminants of potential concern (COPC) identified in the Conceptual Site Model (CSM).			
	Completion of chain of custody (COC) documentation.			
	NATA accredited laboratory results certificates provided by the laboratory.			
	Satisfactory frequency and results for field and laboratory quality control (QC) samples as discussed in Section 1.			
Comparability	Using appropriate techniques for sample recovery, storage and transportation, which were the same for the duration of the project.			
	Experienced sampler(s) used.			
	Use of a NATA registered laboratory.			
	Satisfactory results for field and laboratory QC samples.			
Representativeness	Target media sampled.			
	Number of samples recovered and analysed are considered to be representative of the target media and complying with DQOs.			
	Samples were extracted and analysed within holding times.			
	Samples were analysed in accordance with the COC.			
Precision	Field staff followed standard operating procedures.			
	Acceptable RPD between original samples and replicates (refer to Section G1.1).			
	Satisfactory results for all other field and laboratory QC samples.			
Accuracy	Field staff followed standard operating procedures.			
	Satisfactory results for all field and laboratory QC samples.			

Table G2: Data Quality Indicators

Based on the above, it is considered that the DQIs have been generally complied with.

G3.0 Conclusion

Based on the results of the field QA and field and laboratory QC, and evaluation against the DQIs it is concluded that the field and laboratory test data obtained are reliable and useable for this assessment.

Table QA1: Relative Percentage Difference Results – Intra and Inter - Laboratory Replicates

			Metals							
			Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc
Sample ID	Depth	Sample Date	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
QA3	0 - 0.1 m	19/10/2021	<5	<1	5	20	905	<0.1	<2	437
106/0.1	0 - 0.1 m	19/10/2021	<4	0.7	5	17	710	<0.1	2	370
		Difference	1	0.3	0	3	195	0	0	67
		RPD	22%	35%	0%	16%	24%	0%	0%	17%
QA2	0 - 0.1 m	19/10/2021	6	<0.4	15	20	14	<0.1	10	37
112/0.1	0 - 0.1 m	19/10/2021	8	<0.4	13	11	59	<0.1	2	170
		Difference	2	0	2	9	45	0	8	133
		RPD	29%	0%	14%	58%	123%	0%	133%	129%
QA1	0 - 0.1 m	19/10/2021	8	<0.4	14	4	23	<0.1	<1	60
118/0.05	0 - 0.1 m	19/10/2021	<4	<0.4	8	4	21	<0.1	1	75
		Difference	4	0	6	0	2	0	0	15
		RPD	67%	0%	55%	0%	9%	0%	0%	22%

Table QA2: Rinsate Blank Results

					N	letals			
		Arsenic	Cadmium	Total Chromium	Copper	Lead	Mercury (inorganic)	Nickel	Zinc
	PQL	0.05	0.01	0.01	0.01	0.03	0.0005	0.02	0.02
Sample ID	Sample Date	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l
RB1	02/11/2021	<0.05	<0.01	<0.01	<0.01	<0.03	<0.0005	<0.02	<0.02

Appendix H

Data Quality Objectives

Appendix H Data Quality Objectives

H1.0 Data Quality Objectives

The DSI has been devised broadly in accordance with the seven-step data quality objective (DQO) process which is provided in Appendix B, Schedule B2 of NEPC *National Environment Protection* (Assessment of Site Contamination) Measure 1999 (as amended 2013) [NEPM] (NEPC, 2013).

Step	Summary
	The objective of the investigation was to confirm the contamination status of the site with respect to the proposed land use.
1: State the problem	DP has previously prepared a PSI for the site, which commented that the site is generally suitable for the proposed residential development, subject to the recommendations outlined in Section 14 of DP (2020), including undertaking of confirmatory investigations, as stated below:
	• Confirmatory Investigations: Given the preliminary nature of the current PSI (completed for rezoning purposes), it is recommended that confirmatory investigations be completed as part of the subdivision development approval process. These investigations should aim to confirm the site's suitability for the proposed residential development from a site contamination standpoint.
	The current DSI therefore included intrusive investigations and soil sampling targeting the following PAEC identified in the PSI:
	• Former structures / area of potential fill (PAEC 1);
	Former dam (PAEC 2); and
	Former agricultural land use (PAEC 3).
	A preliminary conceptual site model (CSM) has been prepared (Section 9) for the site.
2: Identify the decisions / goal of the study	The site history has identified possible contaminating previous uses which are identified in the CSM (Section 9). The CSM identified the associated contaminants of potential concern (COPC) and the likely impacted media. The site assessment criteria (SAC) for each of the COPC are detailed in Appendix E.
	The decision is to establish whether or not the results fall below the SAC or whether or not the 95% upper confidence limit of the sample population falls below the SAC. On this basis, an assessment of the site's suitability from a contamination perspective and whether (or not) further assessment and / or remediation is required will be derived.

Step	Summary
3: Identify the information inputs	 The inputs to the investigation include; Review of site history and DP (2020); Observations made during the site walkover (see Section 8); The lithology of the site as described in the logs and field observations (see Section 12.1); Laboratory results of samples, analysed using NATA accredited laboratories and methods, where possible; Field and laboratory QA/QC data (see Appendix G); and Adopted SAC (see Appendix E).
4: Define the study boundaries	The lateral boundaries of the investigation area are shown on Drawing 1, Appendix A. The vertical boundaries are to the extent of contamination impact as determined from the site history assessment and site observations. The assessment is limited to the timeframe over which the field investigation was undertaken.
5: Develop the analytical approach (or decision rule)	 The decision rule is to compare all analytical results with the SAC (Appendix E) based on NEPC (2013)). Where guideline values are absent, other sources of guideline values accepted by NEPC (2013) shall be adopted where possible; Where a sample result exceeds the adopted criterion, a further site-specific assessment will be made as to the risk posed by the presence of that contaminant(s); Initial comparisons will be with individual results then, where required, summary statistics (including mean, standard deviation and 95% upper confidence limit (UCL) of the arithmetic mean (95% UCL) to assess potential risks posed by the site contamination; Quality control results are to be assessed according to their relative percent difference (RPD) values. For field duplicates, triplicates and laboratory results, RPDs should generally be below 30%. The field and laboratory quality assurance assessment is included in Appendix G.
6: Specify the performance or acceptance criteria	 Baseline condition: Contaminants at the site and/or statistical analysis of data (in line with NEPC (2013)) exceed human health and environmental SAC and pose a potentially unacceptable risk to receptors (null hypothesis). Alternative condition: Contaminants at the site and statistical analysis of data (in line with NEPC (2013)) comply with human health and environmental SAC and as such, do not pose a potentially unacceptable risk to receptors (alternative hypothesis). Unless conclusive information from the collected data is sufficient to reject the null hypothesis, it is assumed that the baseline condition is true. Uncertainty that may exist due to the above potential decision errors were mitigated as follows: As well as a primary screening exercise, the use of the 95% UCL as per NEPC (2013) was applied, i.e.: 95% is the defined confidence level associated with the UCL on the geometric mean for contaminant data. The resultant 95%UCL was subsequently screened against the corresponding SAC.

Step	Summary
6: Specify the performance or acceptance criteria (continued)	• Given the site is proposed to be subdivided into individual residential lots, the 95% UCL was not considered applicable to the health-based SAC.
7: Optimise the design for obtaining data	 Sampling design and procedures that were implemented to optimise data collection for achieving the DQOs included the following: Suitably experienced engineers and scientists were chosen to conduct field work and sample analysis interpretation; Professional judgement to identify and sample potentially affected areas; and Only NATA accredited laboratories using NATA endorsed methods were used to perform laboratory analysis whenever possible.

Douglas Partners Pty Ltd

Appendix I

Laboratory Certificates of Analysis and Chain-of-Custody Documentation

CERTIFICATE OF ANALYSIS 280943

Client Details	
Client	Douglas Partners Tuggerah
Attention	Brent Kerry
Address	Unit 5, 3 Teamster Close, Tuggerah, NSW, 2259

Sample Details	
Your Reference	<u>104136.01, Wyee</u>
Number of Samples	28 Soil, 1 Water
Date samples received	22/10/2021
Date completed instructions received	22/10/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

 Date results requested by
 29/10/2021

 Date of Issue
 29/10/2021

 NATA Accreditation Number 2901. This document shall not be reproduced except in full.

 Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Metals Supervisor Josh Williams, LC Supervisor Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		280943-1	280943-2	280943-3	280943-6	280943-7
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	106/0.1	107/0.7
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.6-0.7
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021	28/10/2021	28/10/2021
TRH C ₆ - C ₉	mg/kg	<25	<25	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	101	98	112	107	106

vTRH(C6-C10)/BTEXN in Soil				
Our Reference		280943-10	280943-13	280943-22
Your Reference	UNITS	109/1.0	112/0.1	121/0.1
Depth		0.9-1	0-0.1	0-0.1
Date Sampled		20/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	28/10/2021	28/10/2021	28/10/2021
TRH C6 - C9	mg/kg	<25	<25	<25
TRH C ₆ - C ₁₀	mg/kg	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1
Naphthalene	mg/kg	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	108	109	109

svTRH (C10-C40) in Soil						
Our Reference		280943-1	280943-2	280943-3	280943-6	280943-7
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	106/0.1	107/0.7
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.6-0.7
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50	<50	<50
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	97	97	96	94	96

svTRH (C10-C40) in Soil				
Our Reference		280943-10	280943-13	280943-22
Your Reference	UNITS	109/1.0	112/0.1	121/0.1
Depth		0.9-1	0-0.1	0-0.1
Date Sampled		20/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	27/10/2021	27/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100
Total +ve TRH (C10-C36)	mg/kg	<50	<50	<50
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50
TRH >C ₁₀ - C ₁₆ less Naphthalene (F2)	mg/kg	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50
Surrogate o-Terphenyl	%	94	96	86

PAHs in Soil						
Our Reference		280943-1	280943-2	280943-3	280943-6	280943-7
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	106/0.1	107/0.7
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.6-0.7
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	89	91	107	94	89

PAHs in Soil				
Our Reference		280943-10	280943-13	280943-22
Your Reference	UNITS	109/1.0	112/0.1	121/0.1
Depth		0.9-1	0-0.1	0-0.1
Date Sampled		20/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021
Naphthalene	mg/kg	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	92	89	77

Organochlorine Pesticides in soil						
Our Reference		280943-1	280943-2	280943-3	280943-4	280943-5
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	104/0.1	105/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	86	89	88	82

Organochlorine Pesticides in soil						
Our Reference		280943-6	280943-7	280943-8	280943-9	280943-10
Your Reference	UNITS	106/0.1	107/0.7	108/0.5	109/0.5	109/1.0
Depth		0-0.1	0.6-0.7	0.4-0.5	0.4-0.5	0.9-1
Date Sampled		19/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	90	87	84	88	89

Organochlorine Pesticides in soil						
Our Reference		280943-11	280943-12	280943-13	280943-14	280943-15
Your Reference	UNITS	110/0.1	111/0.1	112/0.1	113/0.1	114/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	83	87	83	80

Organochlorine Pesticides in soil						
Our Reference		280943-16	280943-17	280943-18	280943-19	280943-20
Your Reference	UNITS	115/0.1	116/0.1	117/0.1	118/0.05	119/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	85	81	79	79

Organochlorine Pesticides in soil						
Our Reference		280943-21	280943-22	280943-23	280943-24	280943-25
Your Reference	UNITS	120/0.05	121/0.1	122/0.05	123/0.05	124/0.05
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	76	78	79

Organochlorine Pesticides in soil		
Our Reference		280943-26
Your Reference	UNITS	125/0.1
Depth		0-0.1
Date Sampled		19/10/2021
Type of sample		Soil
Date extracted	-	26/10/2021
Date analysed	-	27/10/2021
alpha-BHC	mg/kg	<0.1
нсв	mg/kg	<0.1
beta-BHC	mg/kg	<0.1
gamma-BHC	mg/kg	<0.1
Heptachlor	mg/kg	<0.1
delta-BHC	mg/kg	<0.1
Aldrin	mg/kg	<0.1
Heptachlor Epoxide	mg/kg	<0.1
gamma-Chlordane	mg/kg	<0.1
alpha-chlordane	mg/kg	<0.1
Endosulfan I	mg/kg	<0.1
pp-DDE	mg/kg	<0.1
Dieldrin	mg/kg	<0.1
Endrin	mg/kg	<0.1
Endosulfan II	mg/kg	<0.1
pp-DDD	mg/kg	<0.1
Endrin Aldehyde	mg/kg	<0.1
pp-DDT	mg/kg	<0.1
Endosulfan Sulphate	mg/kg	<0.1
Methoxychlor	mg/kg	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1
Surrogate TCMX	%	79

Organophosphorus Pesticides in Soil						
Our Reference		280943-1	280943-2	280943-3	280943-4	280943-5
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	104/0.1	105/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	86	89	88	82

Organophosphorus Pesticides in Soil						
Our Reference		280943-6	280943-7	280943-8	280943-9	280943-10
Your Reference	UNITS	106/0.1	107/0.7	108/0.5	109/0.5	109/1.0
Depth		0-0.1	0.6-0.7	0.4-0.5	0.4-0.5	0.9-1
Date Sampled		19/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	90	87	84	88	89

Organophosphorus Pesticides in Soil						
Our Reference		280943-11	280943-12	280943-13	280943-14	280943-15
Your Reference	UNITS	110/0.1	111/0.1	112/0.1	113/0.1	114/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	85	83	87	83	80

Organophosphorus Pesticides in Soil						
Our Reference		280943-16	280943-17	280943-18	280943-19	280943-20
Your Reference	UNITS	115/0.1	116/0.1	117/0.1	118/0.05	119/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	87	85	81	79	79

Organophosphorus Pesticides in Soil						
Our Reference		280943-21	280943-22	280943-23	280943-24	280943-25
Your Reference	UNITS	120/0.05	121/0.1	122/0.05	123/0.05	124/0.05
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	80	78	76	78	79

Organophosphorus Pesticides in Soil		
Our Reference		280943-26
Your Reference	UNITS	125/0.1
Depth		0-0.1
Date Sampled		19/10/2021
Type of sample		Soil
Date extracted	-	26/10/2021
Date analysed	-	27/10/2021
Dichlorvos	mg/kg	<0.1
Dimethoate	mg/kg	<0.1
Diazinon	mg/kg	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1
Ronnel	mg/kg	<0.1
Fenitrothion	mg/kg	<0.1
Malathion	mg/kg	<0.1
Chlorpyriphos	mg/kg	<0.1
Parathion	mg/kg	<0.1
Bromophos-ethyl	mg/kg	<0.1
Ethion	mg/kg	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1
Surrogate TCMX	%	79

PCBs in Soil						
Our Reference		280943-1	280943-2	280943-3	280943-6	280943-7
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	106/0.1	107/0.7
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0.6-0.7
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	86	86	89	90	87

PCBS III SOII				
Our Reference		280943-10	280943-13	280943-22
Your Reference	UNITS	109/1.0	112/0.1	121/0.1
Depth		0.9-1	0-0.1	0-0.1
Date Sampled		20/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date extracted	-	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	87	78

Acid Extractable metals in soil						
Our Reference		280943-1	280943-2	280943-3	280943-4	280943-5
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	104/0.1	105/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	0.5	<0.4	<0.4
Chromium	mg/kg	3	4	3	1	2
Copper	mg/kg	6	12	11	2	4
Lead	mg/kg	18	56	40	8	25
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	2	1	<1	<1
Zinc	mg/kg	43	180	140	40	71

Acid Extractable metals in soil						
Our Reference		280943-6	280943-7	280943-8	280943-9	280943-10
Your Reference	UNITS	106/0.1	107/0.7	108/0.5	109/0.5	109/1.0
Depth		0-0.1	0.6-0.7	0.4-0.5	0.4-0.5	0.9-1
Date Sampled		19/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	0.7	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	4	10	9	6
Copper	mg/kg	17	1	<1	<1	<1
Lead	mg/kg	710	8	11	2	2
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	2	<1	<1	<1	<1
Zinc	mg/kg	370	4	4	<1	1

Acid Extractable metals in soil					_	
Our Reference		280943-11	280943-12	280943-13	280943-14	280943-15
Your Reference	UNITS	110/0.1	111/0.1	112/0.1	113/0.1	114/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Arsenic	mg/kg	<4	<4	8	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	3	1	13	15	4
Copper	mg/kg	9	8	11	<1	3
Lead	mg/kg	36	12	59	7	5
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	1	<1	2	<1	<1
Zinc	mg/kg	100	23	170	6	13

Acid Extractable metals in soil						
Our Reference		280943-16	280943-17	280943-18	280943-19	280943-20
Your Reference	UNITS	115/0.1	116/0.1	117/0.1	118/0.05	119/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	6	5	8	5
Copper	mg/kg	4	10	5	4	<1
Lead	mg/kg	3	10	13	21	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	<1
Zinc	mg/kg	19	42	40	75	4

Acid Extractable metals in soil						
Our Reference		280943-21	280943-22	280943-23	280943-24	280943-25
Your Reference	UNITS	120/0.05	121/0.1	122/0.05	123/0.05	124/0.05
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Arsenic	mg/kg	6	4	<4	7	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	11	9	4	12	7
Copper	mg/kg	1	1	4	3	4
Lead	mg/kg	12	8	4	11	6
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	<1	<1
Zinc	mg/kg	14	5	14	22	15

Acid Extractable metals in soil				
Our Reference		280943-26	280943-27	280943-28
Your Reference	UNITS	125/0.1	QA1	QA2
Depth		0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	26/10/2021	26/10/2021	26/10/2021
Arsenic	mg/kg	<4	8	6
Cadmium	mg/kg	<0.4	<0.4	<0.4
Chromium	mg/kg	6	14	15
Copper	mg/kg	4	4	20
Lead	mg/kg	6	23	14
Mercury	mg/kg	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	10
Zinc	mg/kg	13	60	37

Moisture						
Our Reference		280943-1	280943-2	280943-3	280943-4	280943-5
Your Reference	UNITS	101/0.1	102/0.1	103/0.1	104/0.1	105/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Moisture	%	9.9	8.9	10	10	9.7
Moisture						
Our Reference		280943-6	280943-7	280943-8	280943-9	280943-10
Your Reference	UNITS	106/0.1	107/0.7	108/0.5	109/0.5	109/1.0
Depth		0-0.1	0.6-0.7	0.4-0.5	0.4-0.5	0.9-1
Date Sampled		19/10/2021	20/10/2021	20/10/2021	20/10/2021	20/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Moisture	%	14	19	18	12	20
Moisture						
Our Reference		280943-11	280943-12	280943-13	280943-14	280943-15
Your Reference	UNITS	110/0.1	111/0.1	112/0.1	113/0.1	114/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Moisture	%	15	19	14	14	9.4
Moisture						
Our Reference		280943-16	280943-17	280943-18	280943-19	280943-20
Your Reference	UNITS	115/0.1	116/0.1	117/0.1	118/0.05	119/0.1
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared		00/40/0004	00/40/0004	26/10/2021	26/10/2021	26/10/2021
	-	26/10/2021	26/10/2021	20/10/2021	20/10/2021	20/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021

Moisture						
Our Reference		280943-21	280943-22	280943-23	280943-24	280943-25
Your Reference	UNITS	120/0.05	121/0.1	122/0.05	123/0.05	124/0.05
Depth		0-0.1	0-0.1	0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021	27/10/2021	27/10/2021
Moisture	%	15	8.4	9.1	17	9.2

Moisture				
Our Reference		280943-26	280943-27	280943-28
Your Reference	UNITS	125/0.1	QA1	QA2
Depth		0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date prepared	-	26/10/2021	26/10/2021	26/10/2021
Date analysed	-	27/10/2021	27/10/2021	27/10/2021
Moisture	%	8.5	15	14

Asbestos ID - soils NEPM				
Our Reference		280943-1	280943-2	280943-6
Your Reference	UNITS	101/0.1	102/0.1	106/0.1
Depth		0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	29/10/2021	29/10/2021	29/10/2021
Sample mass tested	g	701.82	503.44	504.14
Sample Description	-	Brown fine- grained soil & rocks	Brown clayey soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	No asbestos detected at reporting limit of 0.1g/kg Organic fibres detected	Chrysotile asbestos detected Amosite asbestos detected Organic fibres
Trace Analysis	-	No asbestos detected	No asbestos detected	detected No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	0.4794
Asbestos ID in soil <0.1g/kg*	-	Chrysotile	No visible asbestos detected	See Above
ACM >7mm Estimation*	g	0.0134	-	0.2417
FA and AF Estimation*	g	_	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Metals in Water - Dissolved		
Our Reference		280943-29
Your Reference	UNITS	RB1
Depth		0-0.1
Date Sampled		19/10/2021
Type of sample		Water
Date digested	-	26/10/2021
Date analysed	-	26/10/2021
Arsenic - Dissolved	mg/L	<0.05
Cadmium - Dissolved	mg/L	<0.01
Chromium - Dissolved	mg/L	<0.01
Copper - Dissolved	mg/L	<0.01
Lead - Dissolved	mg/L	<0.03
Mercury - Dissolved	mg/L	<0.0005
Nickel - Dissolved	mg/L	<0.02
Zinc - Dissolved	mg/L	<0.02

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.

Method ID	Methodology Summary
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC- MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of the positive individual PAHs.</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONTROL: vTRH(C6-C10)/BTEXN in Soil						Du	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2
Date extracted	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			28/10/2021	1	28/10/2021	28/10/2021		28/10/2021	28/10/2021
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	1	<25	<25	0	98	97
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	1	<25	<25	0	98	97
Benzene	mg/kg	0.2	Org-023	<0.2	1	<0.2	<0.2	0	91	88
Toluene	mg/kg	0.5	Org-023	<0.5	1	<0.5	<0.5	0	93	91
Ethylbenzene	mg/kg	1	Org-023	<1	1	<1	<1	0	104	103
m+p-xylene	mg/kg	2	Org-023	<2	1	<2	<2	0	101	101
o-Xylene	mg/kg	1	Org-023	<1	1	<1	<1	0	100	98
Naphthalene	mg/kg	1	Org-023	<1	1	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	117	1	101	105	4	108	105

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Re	ecovery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	10	26/10/2021	26/10/2021		[NT]	[NT]
Date analysed	-			[NT]	10	28/10/2021	28/10/2021		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	10	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	10	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	10	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	10	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	10	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	[NT]	[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	10	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	10	108	106	2	[NT]	[NT]

QUALITY CONT	ROL: vTRH	(C6-C10)	BTEXN in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	26/10/2021	26/10/2021		[NT]	[NT]
Date analysed	-			[NT]	22	28/10/2021	28/10/2021		[NT]	[NT]
TRH C ₆ - C ₉	mg/kg	25	Org-023	[NT]	22	<25	<25	0	[NT]	[NT]
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	[NT]	22	<25	<25	0	[NT]	[NT]
Benzene	mg/kg	0.2	Org-023	[NT]	22	<0.2	<0.2	0	[NT]	[NT]
Toluene	mg/kg	0.5	Org-023	[NT]	22	<0.5	<0.5	0	[NT]	[NT]
Ethylbenzene	mg/kg	1	Org-023	[NT]	22	<1	<1	0	[NT]	[NT]
m+p-xylene	mg/kg	2	Org-023	[NT]	22	<2	<2	0	[NT]	[NT]
o-Xylene	mg/kg	1	Org-023	[NT]	22	<1	<1	0	[NT]	[NT]
Naphthalene	mg/kg	1	Org-023	[NT]	22	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	[NT]	22	109	114	4	[NT]	[NT]

QUALITY CO			Du	plicate		Spike Re	covery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2
Date extracted	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	1	<50	<50	0	108	80
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	1	<100	<100	0	110	72
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	1	<100	<100	0	128	72
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	1	<50	<50	0	108	80
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	1	<100	<100	0	110	72
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	1	<100	<100	0	128	72
Surrogate o-Terphenyl	%		Org-020	96	1	97	98	1	121	97

QUALITY CONTROL: svTRH (C10-C40) in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	10	26/10/2021	26/10/2021			
Date analysed	-			[NT]	10	26/10/2021	26/10/2021			
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	[NT]	10	<50	<50	0		
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	[NT]	10	<50	<50	0		
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	[NT]	10	<100	<100	0		
Surrogate o-Terphenyl	%		Org-020	[NT]	10	94	98	4		

QUALITY CONTROL: svTRH (C10-C40) in Soil Test Description Units POI Method Blar						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-				22	26/10/2021	26/10/2021		[NT]	
Date analysed	-				22	27/10/2021	27/10/2021		[NT]	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020		22	<50	<50	0	[NT]	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020		22	<100	<100	0	[NT]	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020		22	<100	<100	0	[NT]	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020		22	<50	<50	0	[NT]	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020		22	<100	<100	0	[NT]	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020		22	<100	<100	0	[NT]	
Surrogate o-Terphenyl	%		Org-020	[NT]	22	86	88	2	[NT]	[NT]

QUALITY CONTROL: PAHs in Soil						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2
Date extracted	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			27/10/2021	1	27/10/2021	27/10/2021		27/10/2021	27/10/2021
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	105	86
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	80	73
Fluorene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	99	93
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	102	82
Anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	73
Pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	75
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	73
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	1	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	1	<0.05	<0.05	0	108	106
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	84	1	89	93	4	100	87

QUALIT	Y CONTRO	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-				10	26/10/2021	26/10/2021		26/10/2021	[NT]
Date analysed	-				10	27/10/2021	27/10/2021		27/10/2021	
Naphthalene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	105	
Acenaphthylene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Acenaphthene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	71	
Fluorene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	92	
Phenanthrene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	102	
Anthracene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Fluoranthene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	90	
Pyrene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	89	
Benzo(a)anthracene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Chrysene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	77	
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025		10	<0.2	<0.2	0	[NT]	
Benzo(a)pyrene	mg/kg	0.05	Org-022/025		10	<0.05	<0.05	0	108	
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025		10	<0.1	<0.1	0	[NT]	
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	10	92	86	7	98	[NT]

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	26/10/2021	26/10/2021			[NT]
Date analysed	-			[NT]	22	27/10/2021	27/10/2021			[NT]
Naphthalene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Acenaphthylene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Fluorene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Phenanthrene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Anthracene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Pyrene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Chrysene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	[NT]	22	<0.2	<0.2	0		[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	[NT]	22	<0.05	<0.05	0		[NT]
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0		[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	[NT]	22	77	80	4	[NT]	[NT]

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2
Date extracted	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			27/10/2021	1	27/10/2021	27/10/2021		27/10/2021	27/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	84	80
НСВ	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	89
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	89	77
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	77	70
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	74
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	88	74
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	96	81
Endrin	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	78
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	92	80
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	86	78
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	84	1	86	89	3	87	87

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	280943-21
Date extracted	-			[NT]	10	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			[NT]	10	27/10/2021	27/10/2021		27/10/2021	27/10/2021
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	76	76
НСВ	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	89	86
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	89	91
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	81	83
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	86	86
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	86	88
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	98	96
Endrin	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	70	70
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	88	90
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	86	86
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	10	89	85	5	79	80

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	26/10/2021	26/10/2021		[NT]	[NT]
Date analysed	-			[NT]	22	27/10/2021	27/10/2021		[NT]	[NT]
alpha-BHC	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
НСВ	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
gamma-BHC	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
delta-BHC	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
gamma-Chlordane	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Dieldrin	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endrin	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endosulfan II	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endrin Aldehyde	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Methoxychlor	mg/kg	0.1	Org-022/025	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	22	78	80	3	[NT]	[NT]

QUALITY CONTROL: Organophosphorus Pesticides in S						Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2
Date extracted	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			27/10/2021	1	27/10/2021	27/10/2021		27/10/2021	27/10/2021
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	72	132
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	91	79
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	73	71
Malathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	95	95
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	94	80
Parathion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	68	68
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	74	68
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	1	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	84	1	86	89	3	87	87

QUALITY CONTROL: Organophosphorus Pesticides in Soil					Duplicate				Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	280943-21
Date extracted	-			[NT]	10	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			[NT]	10	27/10/2021	27/10/2021		27/10/2021	27/10/2021
Dichlorvos	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	74	76
Dimethoate	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	91	91
Fenitrothion	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	73	73
Malathion	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	93	97
Chlorpyriphos	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	92	92
Parathion	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	68	68
Bromophos-ethyl	mg/kg	0.1	Org-022	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	72	72
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	[NT]	10	89	85	5	79	80

QUALITY CONTRO	ALITY CONTROL: Organophosphorus Pesticides in Soil				Duplicate				Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]	
Date extracted	-				22	26/10/2021	26/10/2021			[NT]	
Date analysed	-				22	27/10/2021	27/10/2021			[NT]	
Dichlorvos	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Dimethoate	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Diazinon	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Ronnel	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Fenitrothion	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Malathion	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Chlorpyriphos	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Parathion	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Bromophos-ethyl	mg/kg	0.1	Org-022		22	<0.1	<0.1	0		[NT]	
Ethion	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025		22	<0.1	<0.1	0		[NT]	
Surrogate TCMX	%		Org-022/025		22	78	80	3		[NT]	
QUALIT	Y CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %	
------------------	----------	---------	---------	------------	---	------------	------------	-----	------------	------------	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2	
Date extracted	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021	
Date analysed	-			27/10/2021	1	27/10/2021	27/10/2021		27/10/2021	27/10/2021	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	100	80	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	1	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-021	84	1	86	89	3	87	87	

QUALIT	Y CONTRO	L: PCBs	in Soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	[NT]
Date extracted	-			[NT]	10	26/10/2021	26/10/2021		26/10/2021	[NT]
Date analysed	-			[NT]	10	27/10/2021	27/10/2021		27/10/2021	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	100	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	10	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	10	89	85	5	79	[NT]

QUALIT	TY CONTRO	L: PCBs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date extracted	-			[NT]	22	26/10/2021	26/10/2021		[NT]	[NT]
Date analysed	-			[NT]	22	27/10/2021	27/10/2021		[NT]	[NT]
Aroclor 1016	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1221	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1232	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1242	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1248	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1254	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Aroclor 1260	mg/kg	0.1	Org-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-021	[NT]	22	78	80	3	[NT]	[NT]

QUALITY CONT	ROL: Acid E	Extractabl	e metals in soil		Du	Spike Re	Spike Recovery %			
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	280943-2
Date prepared	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			26/10/2021	1	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Arsenic	mg/kg	4	Metals-020	<4	1	<4	<4	0	96	96
Cadmium	mg/kg	0.4	Metals-020	<0.4	1	<0.4	<0.4	0	99	96
Chromium	mg/kg	1	Metals-020	<1	1	3	3	0	103	106
Copper	mg/kg	1	Metals-020	<1	1	6	6	0	106	97
Lead	mg/kg	1	Metals-020	<1	1	18	17	6	116	108
Mercury	mg/kg	0.1	Metals-021	<0.1	1	<0.1	<0.1	0	111	94
Nickel	mg/kg	1	Metals-020	<1	1	<1	<1	0	98	92
Zinc	mg/kg	1	Metals-020	<1	1	43	42	2	93	83

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-2	280943-21
Date prepared	-			[NT]	10	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Date analysed	-			[NT]	10	26/10/2021	26/10/2021		26/10/2021	26/10/2021
Arsenic	mg/kg	4	Metals-020	[NT]	10	<4	<4	0	91	81
Cadmium	mg/kg	0.4	Metals-020	[NT]	10	<0.4	<0.4	0	94	75
Chromium	mg/kg	1	Metals-020	[NT]	10	6	6	0	93	87
Copper	mg/kg	1	Metals-020	[NT]	10	<1	<1	0	101	93
Lead	mg/kg	1	Metals-020	[NT]	10	2	2	0	102	73
Mercury	mg/kg	0.1	Metals-021	[NT]	10	<0.1	<0.1	0	92	81
Nickel	mg/kg	1	Metals-020	[NT]	10	<1	<1	0	90	81
Zinc	mg/kg	1	Metals-020	[NT]	10	1	<1	0	91	88

QUALITY CONT	ROL: Acid E	xtractabl	e metals in soil			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	[NT]	[NT]
Date prepared	-			[NT]	22	26/10/2021	26/10/2021		[NT]	[NT]
Date analysed	-			[NT]	22	26/10/2021	26/10/2021		[NT]	[NT]
Arsenic	mg/kg	4	Metals-020	[NT]	22	4	6	40	[NT]	[NT]
Cadmium	mg/kg	0.4	Metals-020	[NT]	22	<0.4	<0.4	0	[NT]	[NT]
Chromium	mg/kg	1	Metals-020	[NT]	22	9	12	29	[NT]	[NT]
Copper	mg/kg	1	Metals-020	[NT]	22	1	2	67	[NT]	[NT]
Lead	mg/kg	1	Metals-020	[NT]	22	8	10	22	[NT]	[NT]
Mercury	mg/kg	0.1	Metals-021	[NT]	22	<0.1	<0.1	0	[NT]	[NT]
Nickel	mg/kg	1	Metals-020	[NT]	22	<1	<1	0	[NT]	[NT]
Zinc	mg/kg	1	Metals-020	[NT]	22	5	6	18	[NT]	[NT]

QUALITY CON	TROL: Meta	lls in Wate	er - Dissolved			Du		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-W1	[NT]
Date digested	-			26/10/2021	[NT]		[NT]	[NT]	26/10/2021	
Date analysed	-			26/10/2021	[NT]		[NT]	[NT]	26/10/2021	
Arsenic - Dissolved	mg/L	0.05	Metals-020	<0.05	[NT]		[NT]	[NT]	120	
Cadmium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	115	
Chromium - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	116	
Copper - Dissolved	mg/L	0.01	Metals-020	<0.01	[NT]		[NT]	[NT]	120	
Lead - Dissolved	mg/L	0.03	Metals-020	<0.03	[NT]		[NT]	[NT]	118	
Mercury - Dissolved	mg/L	0.0005	Metals-021	<0.0005	[NT]		[NT]	[NT]	109	
Nickel - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	118	
Zinc - Dissolved	mg/L	0.02	Metals-020	<0.02	[NT]		[NT]	[NT]	115	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	I Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 280943-1; Chrysotile asbestos identified in 0.0891g of fibre cement material >7mm

Sample 280943-6; Chrysotile and Amosite asbestos identified in 1.6112g of fibre cement material >7mm

CHAIN OF CUSTODY DESPATCH SHEET

Projec	t No:	104136.0	D1	•	Suburb):	Wyee							To:	Envirola	ab Servi	ces
Projec	t Manager:	Brent Ke	erry		Order N	Number:				Sa	ampler:	MJH			12 Ashle	ey St, C	hatswood NSW 2067
Fmail		Brent.Ke	rry@doug	laspartners	.com.au		_							Attn:	Sample	Receip	t
Turna	round time:	✓ Standa	ird 🗌 7	72 hour	48 hour	24 hou	ur 📘	Same da	y					Contact:	(02) 991	10 6200	samplereceipt@envirolab.com.au
Prior	Storage: 🗸 Fr	ridge	Freezer	Shelf	Do sam	ples con	itain 'p	otentia	al' HBN	/?	Yes	(If YE	S, then ha	indle, trans	sport and s	store in a	ccordance with FPM HAZID)
	Sar	nple ID		beld	Sample Type	Container Type					Anal	ytes					
Lab ID	Location / Other ID	Depth From	Depth To	Date Samp	S - soil W - water	G - glass P - plastic	Combo#6A	Combo#6	MH	OCP/OPP							Notes/ Preservation/ Additional Requirements
ì	101/0.1	0	0.1	19/10/21	S	сţР	х							 			2013)
2	102/0.1	0	0.1	19/10/21	s	G₊P	X,										
3	103/0.1	0	0.1	19/10/21	S	G		х	×					L			
4	104/0.1	0	0.1	19/10/21	S	G			х	×							
5	105/0.1	0	0.1	19/10/21	Ŝ	G			x	x			-				
6	, 106/0.1	0	0.1	19/10/21	s	_{G‡} p	Х -			>							
7	107/0.7	0.6	0.7	20/10/21	Ś	G		x									
8	108/0.5	0.4	0.5	20/10/21	s	G			x	x							Envirolat Servic
0	109/0.5	0.4	0.5	20/10/21	Ś	G			x	X							12 Asitley St ROLAB Chatswood NSW 2007
TÖ	109/1.0	0.9	1	20/10/21	S	G	,	x								Jot	Ph: (02) 9910 620 J
11	110/0.1	0	0.1	19/10/21	S	G			x	x						Dat	Received: 1322.10.21
12	111/0.1	0	0.1	19/10/21	S	G			x	x						Rec	e Received: 104) pived By: TJ HAN
13	112/0.1	0	0.1	19/10/21	S	G		x		·						Ten Coc	p: Croll/Ambient IPC
19-	113/0.1	0	0.1	19/10/21	s	G			x	X						Sec	urity: Intact/Eroken/Moma
Metal	s to analyse:		<u> </u>		· · · · · · · · · · · · · · · · · · ·						A			LAB F	RECEIP	<u></u>	
Numb	per of sample	es in cor	ntainer:			Transpo	rted to	o labor	atory b	y:	INT	·		Lab Ro	ef. No:	10	<u> </u>
Send	results to:	Douglas	Partners	Pty Ltd						· · ·				Receiv	/ed by:	<u>TJH</u>	
Addre	ess:	Unit 5, 3	Teamster (Close, Tugge	arah NSW	Phone:	(02) 43	51 1422	2			<i>M</i>		Date 8	<u>a lime:</u>	27	-10-61 10-73
Relin	quished by:	Brent K	erry			Date:	21/10/2	2021		Signed:		any		laigue	a:		
											· C						

.

CHAIN OF CUSTODY DESPATCH SHEET

Projec	t No:	104136.	01		Suburt):	Wyee			<u> </u>				 <u>To:</u>	Envirola	b Servi	ces
Projec	t Manager:	Brent Ke			Order	Number:			Dispat	tch dat	e:	21/10/2	021		12 Ashl	ey St, C	hatswood NSW 2067
					Comple	Containor		_						 			
	Sa	mple ID		oled	Type	Type						Analyte	S	 			
Lab ID	Location / Other ID	Depth From	Depth To	Date Samp	S - soil W - water	G - glass P - plastic	Combo#6A	Combo#6	WH	OCP/OPP							Notes/ Preservation/ Additional Requirements
.{5	114/0.1	0	0.1	19/10/21	S	G			x	x							
16	115/0.1	0	0.1	19/10/21	S	G			x	x							
(7	116/0.1	0	0.1	19/10/21	S	G			x	,x							
81	117/0.1	0	0.1	19/10/21	S	G			x	X				 			
19	118/0.05	0	0.1	19/10/21	S	G			x	JX							
20	119/0.1	0	0.1	19/10/21	S	G			x	X							
21	120/0.05	0	0.1	19/10/21	S	G			x	X		-					
12	121/0.1	0.	0.1	19/10/21	S	G		x	r	4 ·				 			
23	122/0.05	0	0.1	19/10/21	S	G			x	X	<u>}</u>			 			· · · · · · · · · · · · · · · · · · ·
2.4	123/0.05	0	0.1	19/10/21	S	G			x	x				 			· · · · · · · · · · · · · · · · · · ·
2.5	124/0.05	0	0.1	19/10/21	s	G			x	×							
7.50	125/0.1	0	0.1	19/10/21	s	G			x	x					ļ		
2.7	QA1	0	0.1	19/10/21	s	G			x								
ng	QA2	0	. 0.1	19/10/21	S	G			x								
20	RB1	0	0.1	19/10/21	s	G			X								
		1			1												
		+			+					1							

. -

9

CERTIFICATE OF ANALYSIS 282343

Client Details	
Client	Douglas Partners Tuggerah
Attention	Brent Kerry
Address	Unit 5, 3 Teamster Close, Tuggerah, NSW, 2259

Sample Details	
Your Reference	<u>104136.01, Wyee</u>
Number of Samples	4 Soil
Date samples received	09/11/2021
Date completed instructions received	09/11/2021

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by Date of Issue

16/11/2021 16/11/2021

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Analyst: Nyovan Moonean Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Giovanni Agosti, Group Technical Manager Jeremy Faircloth, Operations Manager, Sydney Lucy Zhu, Asbestos Supervisor Authorised By

Nancy Zhang, Laboratory Manager

Acid Extractable metals in soil		
Our Reference		282343-1
Your Reference	UNITS	101
Depth		0.4-0.5
Date Sampled		19/10/2021
Type of sample		Soil
Date prepared	-	11/11/2021
Date analysed	-	15/11/2021
Arsenic	mg/kg	<4
Cadmium	mg/kg	<0.4
Chromium	mg/kg	1
Copper	mg/kg	5
Lead	mg/kg	6
Mercury	mg/kg	<0.1
Nickel	mg/kg	<1
Zinc	mg/kg	17

Moisture		
Our Reference		282343-1
Your Reference	UNITS	101
Depth		0.4-0.5
Date Sampled		19/10/2021
Type of sample		Soil
Date prepared	-	10/11/2021
Date analysed	-	12/11/2021
Moisture	%	7.4

Asbestos ID - soils NEPM				
Our Reference		282343-2	282343-3	282343-4
Your Reference	UNITS	103	104	105
Depth		0-0.1	0-0.1	0-0.1
Date Sampled		19/10/2021	19/10/2021	19/10/2021
Type of sample		Soil	Soil	Soil
Date analysed	-	15/11/2021	15/11/2021	15/11/2021
Sample mass tested	g	640.03	626.57	596.15
Sample Description	-	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks	Brown fine- grained soil & rocks
Asbestos ID in soil (AS4964) >0.1g/kg	-	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg	No asbestos detected at reporting limit of 0.1g/kg
		Organic fibres detected	Organic fibres detected	Organic fibres detected
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected
Total Asbestos ^{#1}	g/kg	<0.1	<0.1	<0.1
Asbestos ID in soil <0.1g/kg*	-	Chrysotile Amosite	No visible asbestos detected	No visible asbestos detected
ACM >7mm Estimation*	g	_	-	-
FA and AF Estimation*	g	0.0006	-	-
FA and AF Estimation*#2	%(w/w)	<0.001	<0.001	<0.001

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
ASB-001	Asbestos ID - Identification of asbestos in soil samples using Polarised Light Microscopy and Dispersion Staining Techniques. Minimum 500mL soil sample was analysed as recommended by "National Environment Protection (Assessment of site contamination) Measure, Schedule B1 and "The Guidelines from the Assessment, Remediation and Management of Asbestos- Contaminated Sites in Western Australia - May 2009" with a reporting limit of 0.1g/kg (0.01% w/w) as per Australian Standard AS4964-2004. Results reported denoted with * are outside our scope of NATA accreditation.
	NOTE ^{#1} Total Asbestos g/kg was analysed and reported as per Australian Standard AS4964 (This is the sum of ACM >7mm, <7mm and FA/AF)
	NOTE ^{#2} The screening level of 0.001% w/w asbestos in soil for FA and AF only applies where the FA and AF are able to be quantified by gravimetric procedures. This screening level is not applicable to free fibres.
	Estimation = Estimated asbestos weight
	Results reported with "" is equivalent to no visible asbestos identified using Polarised Light microscopy and Dispersion Staining Techniques.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-021	Determination of Mercury by Cold Vapour AAS.

QUALITY CONT	ROL: Acid E	xtractable		covery %						
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-8	[NT]
Date prepared	-			11/11/2021	[NT]		[NT]	[NT]	11/11/2021	
Date analysed	-			15/11/2021	[NT]		[NT]	[NT]	15/11/2021	
Arsenic	mg/kg	4	Metals-020	<4	[NT]		[NT]	[NT]	102	
Cadmium	mg/kg	0.4	Metals-020	<0.4	[NT]		[NT]	[NT]	107	
Chromium	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Copper	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	102	
Lead	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	109	
Mercury	mg/kg	0.1	Metals-021	<0.1	[NT]		[NT]	[NT]	102	
Nickel	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	107	
Zinc	mg/kg	1	Metals-020	<1	[NT]		[NT]	[NT]	111	

Result Definiti	Result Definitions									
NT	Not tested									
NA	Test not required									
INS	Insufficient sample for this test									
PQL	Practical Quantitation Limit									
<	Less than									
>	Greater than									
RPD	Relative Percent Difference									
LCS	Laboratory Control Sample									
NS	Not specified									
NEPM	National Environmental Protection Measure									
NR	Not Reported									

Quality Control Definitions									
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.								
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.								
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.								
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.								
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.								

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos-ID in soil: NEPM

This report is consistent with the reporting recommendations in the National Environment Protection (Assessment of Site Contamination) Measure, Schedule B1, May 2013. This is reported outside our scope of NATA accreditation.

Factual description of asbestos identified in the soil samples: NEPM Sample 282343-2; Chrysotile and Amosite asbestos identified in 0.0006g of loose fibre bundles

Douglas Partners Geotechnics | Environment | Groundwater

CHAIN OF CUSTODY DESPATCH SHEET

Droigo	t No:	104136 ()1		Suburb):	Wvee								To:	Envirola	b Servi	Ces
Projec	t Managor	Brent Ko			Order I	Number					Sampl	er:	MJH			12 Ashle	y St, C	hatswood NSW 2067
Empli	. wanayer:	Brent Ko	rrv@douo	lasnartners	.com.au		_								Attn: Sample Receipt			
	round time:	V Standa		72 hour	48 hour	24 ho	ur 🗌	Same da	v						Contact:	(02) 991	0 6200	samplereceipt@envirolab.com.au
Duina	round time.			Shelf	Do san	nles cor	ntain 'r	otentia	I' HBN	? 7	No [Yes	(If YES.	then ha	ndle, trans	port and s	tore in a	ccordance with FPM HAZID)
Prior	Storage: V Pr				Sample	Container							(
	San	nple ID		oled	Type	Type						Analyte	es			 		
Lab				lut	er	ပ္ ပ္	ЗA	မှု		ሲ	s 🦳							Notes/ Preservation/ Additional
	r io	ξĘ	Ę	Se	soil /ate	las ast)#o	100	Σ	ЦŎ.	DT Sto							Requirements
	cat		ЦĞ	ate	" 5	6 - d	qu	l mo	Ĩ	CP	sbe 50(
	δĔ			Ö	°S∣	υġ	ပိ	ŏ		õ	A C						_	
	404/0 5		0.5	10/10/21	e .	G			Y									All Asbestos analysis = 500ml (NEPC,
I.	101/0.5	0.4	0.5	19/10/21	3	<u> </u>												2013)
2	103/0.1	0.0	0.1	19/10/21		P					X							
3	104/0.1	0.0	0.1	19/10/21		1					x							
Ŧ	405/0.4	0.0	01	10/10/21	1/						x							· ·
	105/0.1	0.0	0.1	19/10/21		<u> </u>					<u> </u>			<u> </u>		┼ ─┤		
	<u> </u>																	function of the second
		<u> </u>				· · ·												Chatswood NSW 2017
														· . <u></u>				Ph: (02) 9910 6200
																		Date Received 9/11/21
											ļ				<u> </u>			Time Received: 1 to 2.0
												ļ						Received By: TR
					<u> </u>													Cooline: Cool/Ambient
				<u> </u>								<u> </u>						Stroken/None
<u> </u>					<u> </u>						 .							
	· · _ · _ ·											† –						
<u> </u>		<u> </u>	<u> </u>	1	<u> </u>	L	1	<u> </u>	I	L		<u> </u>	<u> </u>				<u>т</u>	
Metal	s to analyse:							. 1_7 -	- 4 1							A Not	<u>+</u> » 9	31.242
Numb	per of sample	s in con	tainer:	4		Transported to laboratory by: TNT						Receiv	ad by:	- <u></u>	North DICad			
Send	results to:	Douglas	Partners	Pty Ltd		Dhanas	(00) 40	E4 4400							Date &	Time:	a7	$\frac{1}{1} \frac{1}{1} \frac{1}$
Addre	ess:	Unit 5, 3	Teamster (Close, Tugge	rah NSW	Prinone:	02) 43	01 1422	<u> </u>	Signe		Nella			Signer	: <u>, , , , , , , , , , , , , , , , , , ,</u>	H	
Relin	quished by:	Brent Ke	erry			juate:	8/11/2	<u> </u>		Signe	u. /	KOP	<u> </u>		loidug			

۰.

CERTIFICATE OF ANALYSIS

Work Order	ES2138339	Page	: 1 of 2
Client	DOUGLAS PARTNERS PTY LTD	Laboratory	Environmental Division Sydney
Contact	: BRENT KERRY	Contact	: Sepan Mahamad
Address	: 5/3 TEANSTER CL	Address	: 277-289 Woodpark Road Smithfield NSW Australia 2164
	TUGGERAH 2259		
Telephone		Telephone	: +61 2 8784 8555
Project	: 104136.01	Date Samples Received	: 22-Oct-2021 17:10
Order number	:	Date Analysis Commenced	: 27-Oct-2021
C-O-C number	:	Issue Date	: 29-Oct-2021 13:12
Sampler	: MJH		Hac-MRA NATA
Site	: Wyee		
Quote number	: EN/222		Accreditation No. 925
No. of samples received	: 1		Accredited for compliance with
No. of samples analysed	:1		ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ivan Taylor	Analyst	Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

^ = This result is computed from individual analyte detections at or above the level of reporting

ø = ALS is not NATA accredited for these tests.

~ = Indicates an estimated value.

Analytical Results

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QA3								
		Sampli	ng date / time	19-Oct-2021 00:00								
Compound	CAS Number	LOR	Unit	ES2138339-001								
				Result								
EA055: Moisture Content (Dried @ 105-110°C)												
Moisture Content		1.0	%	15.2								
EG005(ED093)T: Total Metals by ICP-AES												
Arsenic	7440-38-2	5	mg/kg	<5								
Cadmium	7440-43-9	1	mg/kg	<1								
Chromium	7440-47-3	2	mg/kg	5								
Copper	7440-50-8	5	mg/kg	20								
Lead	7439-92-1	5	mg/kg	905								
Nickel	7440-02-0	2	mg/kg	<2								
Zinc	7440-66-6	5	mg/kg	437								
EG035T: Total Recoverable Mercury by	FIMS											
Mercury	7439-97-6	0.1	mg/kg	<0.1								

QUALITY CONTROL REPORT

Work Order	: ES2138339	Page	: 1 of 3
Client Contact Address	DOUGLAS PARTNERS PTY LTD BRENT KERRY 5/3 TEANSTER CL	Laboratory Contact Address	: Environmental Division Sydney : Sepan Mahamad : 277-289 Woodpark Road Smithfield NSW Australia 2164
Telephone Project Order number C-O-C number Sampler Site Quote number No. of samples received	TUGGERAH 2259 : : 104136.01 : : : MJH : Wyee : EN/222 : 1	Telephone Date Samples Received Date Analysis Commenced Issue Date	: +61 2 8784 8555 : 22-Oct-2021 : 29-Oct-2021 : 29-Oct-2021

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

 Signatories
 Position
 Accreditation Category

 Ivan Taylor
 Analyst
 Sydney Inorganics, Smithfield, NSW

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory L	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: Tot	al Metals by ICP-AES (QC	: Lot: 3979516)							
ES2138393-005	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	21	24	14.4	0% - 50%
		EG005T: Nickel	7440-02-0	2	mg/kg	<2	<2	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	14	16	12.6	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	11	12	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	<5	<5	0.0	No Limit
ES2137626-001	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	4	3	39.9	No Limit
		EG005T: Nickel	7440-02-0	2	mg/kg	7	7	0.0	No Limit
		EG005T: Arsenic	7440-38-2	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	242	287	17.4	0% - 20%
		EG005T: Lead	7439-92-1	5	mg/kg	<5	<5	0.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	52	51	0.0	0% - 50%
EA055: Moisture Co	ntent (Dried @ 105-110°C)	(QC Lot: 3979526)							
ES2137626-016	Anonymous	EA055: Moisture Content		0.1	%	4.1	3.7	11.0	No Limit
ES2138726-001	Anonymous	EA055: Moisture Content		0.1	%	10.5	11.0	4.5	0% - 50%
EG035T: Total Reco	overable Mercury by FIMS	(QC Lot: 3979517)							
ES2138393-005	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
ES2137626-001	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 39	979516)							
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	121.1 mg/kg	105	88.0	113
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	0.74 mg/kg	101	70.0	130
EG005T: Chromium	7440-47-3	2	mg/kg	<2	19.6 mg/kg	125	68.0	132
EG005T: Copper	7440-50-8	5	mg/kg	<5	52.9 mg/kg	111	89.0	111
EG005T: Lead	7439-92-1	5	mg/kg	<5	60.8 mg/kg	103	82.0	119
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.3 mg/kg	104	80.0	120
EG005T: Zinc	7440-66-6	5	mg/kg	<5	139.3 mg/kg	89.6	66.0	133
EG035T: Total Recoverable Mercury by FIMS (QCLo	ot: 3979517)							
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.087 mg/kg	108	70.0	125

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				Ма	trix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable L	imits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: To	tal Metals by ICP-AES (QCLot: 3979516)						
ES2137626-001	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	93.7	70.0	130
		EG005T: Cadmium	7440-43-9	50 mg/kg	88.0	70.0	130
		EG005T: Chromium	7440-47-3	50 mg/kg	91.7	68.0	132
		EG005T: Copper	7440-50-8	250 mg/kg	98.6	70.0	130
		EG005T: Lead	7439-92-1	250 mg/kg	89.9	70.0	130
		EG005T: Nickel	7440-02-0	50 mg/kg	89.7	70.0	130
		EG005T: Zinc	7440-66-6	250 mg/kg	80.6	66.0	133
EG035T: Total Rec	overable Mercury by FIMS (QCLot: 3979517)						
ES2137626-001	Anonymous	EG035T: Mercury	7439-97-6	5 mg/kg	98.1	70.0	130

: 104136.01

: Wyee

: MJH

:----

QA/QC Compliance As	sessment to assist	with Quality Review	
: ES2138339	Page	: 1 of 4	
: DOUGLAS PARTNERS PTY LTD	Laboratory	: Environmental Division Sydney	
: BRENT KERRY	Telephone	: +61 2 8784 8555	

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated
reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this
report contribute to the overall DQO assessment and reporting for guideline compliance.

Date Samples Received

No. of samples received

No. of samples analysed

Issue Date

: 22-Oct-2021

: 29-Oct-2021

:1

:1

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Work Order

Client Contact

Project

Sampler

Order number

Site

Outliers : Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- <u>NO</u> Method Blank value outliers occur.
- <u>NO</u> Duplicate outliers occur.
- <u>NO</u> Laboratory Control outliers occur.
- <u>NO</u> Matrix Spike outliers occur.
- For all regular sample matrices, <u>NO</u> surrogate recovery outliers occur.

Outliers : Analysis Holding Time Compliance

• <u>NO</u> Analysis Holding Time Outliers exist.

Outliers : Frequency of Quality Control Samples

• <u>NO</u> Quality Control Sample Frequency Outliers exist.

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for VOC in soils vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: × = Holding time	breach ; 🗸 = Within	n holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055)							
QA3	19-Oct-2021				27-Oct-2021	02-Nov-2021	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T)							
QA3	19-Oct-2021	27-Oct-2021	17-Apr-2022	1	27-Oct-2021	17-Apr-2022	✓
EG035T: Total Recoverable Mercury by FIMS							
Soil Glass Jar - Unpreserved (EG035T)							
QA3	19-Oct-2021	27-Oct-2021	16-Nov-2021	~	28-Oct-2021	16-Nov-2021	✓

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluation	n: × = Quality Co	ontrol frequency n	ot within specification ; \checkmark = Quality Control frequency within specification.
Quality Control Sample Type		Со	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	00	Reaular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
Moisture Content	EA055	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to AS 3550, APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).

SAMPLE RECEIPT NOTIFICATION (SRN)

Work Order	: ES2138339			
Client Contact Address	: DOUGLAS PARTNERS PTY LTD : BRENT KERRY : 5/3 TEANSTER CL TUGGERAH 2259	Laboratory Contact Address	 Environmental Division Sydney Sepan Mahamad 277-289 Woodpark Road Smithfield NSW Australia 2164 	
E-mail	brent.kerry@douglaspartners.com.a u	E-mail	: Sepan.Mahamad@ALSGlobal.com	
Telephone Facsimile	- :	Telephone Facsimile	: +61 2 8784 8555 : +61-2-8784 8500	
Project Order number C-O-C number Site Sampler	: 104136.01 : : : Wyee : MJH	Page Quote number QC Level	: 1 of 2 : EM2017DOUPAR0002 (EN/222) : NEPM 2013 B3 & ALS QC Standard	
Dates Date Samples Received Client Requested Due Date	2 : 22-Oct-2021 17:10 : 29-Oct-2021	Issue Date Scheduled Reporting I	23-Oct-2021 Date 29-Oct-2021	
Delivery Details Mode of Delivery No. of coolers/boxes Receipt Detail	: Carrier : 1 :	Security Seal Temperature No. of samples receive	: Intact. : 12.6'C - Ice Bricks presen ed / analysed : 1 / 1	ıt

General Comments

- This report contains the following information:
 - Sample Container(s)/Preservation Non-Compliances
 - Summary of Sample(s) and Requested Analysis
 - Proactive Holding Time Report
 - Requested Deliverables
- Please refer to the Proactive Holding Time Report table below which summarises breaches of recommended holding times that have occurred prior to samples/instructions being received at the laboratory. The laboratory will process these samples unless instructions are received from you indicating you do not wish to proceed. The absence of this summary table indicates that all samples have been received within the recommended holding times for the analysis requested.
- Please direct any queries you have regarding this work order to the above ALS laboratory contact.
- Analytical work for this work order will be conducted at ALS Sydney.
- Sample Disposal Aqueous (3 weeks), Solid (2 months ± 1 week) from receipt of samples.
- Please be aware that APHA/NEPM recommends water and soil samples be chilled to less than or equal to 6°C for chemical
 analysis, and less than or equal to 10°C but unfrozen for Microbiological analysis. Where samples are received above this
 temperature, it should be taken into consideration when interpreting results. Refer to ALS EnviroMail 85 for ALS
 recommendations of the best practice for chilling samples after sampling and for maintaining a cool temperature during transit.

Sample Container(s)/Preservation Non-Compliances

All comparisons are made against pretreatment/preservation AS, APHA, USEPA standards.

• No sample container / preservation non-compliance exists.

Summary of Sample(s) and Requested Analysis

Some items described below may be part of a laboratory process necessary for the execution of client requested tasks. Packages may contain additional analyses, such as the determination of moisture content and preparation tasks, that are included in the package.

If no sampling time is provided, the sampling time will default 00:00 on the date of sampling. If no sampling date is provided, the sampling date will be assumed by the laboratory and displayed in brackets without a time component

Matrix: SOIL

Matrix: SOIL			EA055-103 e Content	S-02 s (incl. Dig
Laboratory sample ID	Sampling date / time	Sample ID	SOIL - E Moisture	SOIL - S 8 Metals
ES2138339-001	19-Oct-2021 00:00	QA3	✓	✓

Proactive Holding Time Report

Sample(s) have been received within the recommended holding times for the requested analysis.

Requested Deliverables

ACCOUNTS PAYABLE INVOICES - A4 - AU Tax Invoice (INV) Fmail apinvoices@douglaspartners.com.a u **BRENT KERRY** - *AU Certificate of Analysis - NATA (COA) Email brent.kerry@douglaspartners.com.a ш - *AU Interpretive QC Report - DEFAULT (Anon QCI Rep) (QCI) Email brent.kerry@douglaspartners.com.a u - *AU QC Report - DEFAULT (Anon QC Rep) - NATA (QC) Email brent.kerry@douglaspartners.com.a u - A4 - AU Sample Receipt Notification - Environmental HT (SRN) Email brent.kerry@douglaspartners.com.a u - A4 - AU Tax Invoice (INV) Email brent.kerry@douglaspartners.com.a u - Chain of Custody (CoC) (COC) Email brent.kerry@douglaspartners.com.a u - EDI Format - ESDAT (ESDAT) Email brent.kerry@douglaspartners.com.a u - EDI Format - XTab (XTAB) Email brent.kerry@douglaspartners.com.a u

Digestion)

103

	2	12						T?	NI C Curde	2	
Project No: 104130 Project Manager: Brent K	3.01 Cerry	Suburb): Vy Number:	ee		Sampler:	HCW	10:	ALS Sydr	ey	
mail: Brent.k	(erry@douglaspart	ners.com.au				-		Attn	Sample F	eceipt	
Turnaround time: 🗸 Stan	dard 🔄 72 hour	48 hour	24 hour	Same day				Conta	ICT:		
Prior Storage: 🗸 Fridge] Freezer 🔛 Sheli	Do san	iples contai	in 'potential'	" HBM? 🗸	No U	es (If YES,	then handle, t	ansport and sto	re in accordance \	with FPM HAZID)
Sample ID	bled	Sample Type	Container Type			Ana	alytes				
Depth From	Depth To Date Sam	S - soil W - water	G - glass P - plastic		НМ					Notes/	Preservation/ Add Requirements
QA3 0	0.1 19/10	/21 S	G		×						
Env	I I vironmental Divis	sion _									
Syc	Iney Work Order Reference Mork Order Afference	ເດ ເວັ									
Tek	sphone - + 61-2-8794 8555										
								1			
Metals to analyse:									RECEIPT		
Number of samples in co	ontainer:		Transporte	d to laborat	ory by:	TNT		Lab	Ref. No:		
Send results to: Dough	3 Teamster Close Tr	Innerah NSW	Phone: (02	0) 4351 1422				Date	eiveu by. b & Time:		
Relinguished by: Brent H	Kerry		Date: 21/	/10/2021	Signe	id:	1944	Sigr	ied:		
	2	Redim	quished	j.	·				- Mr.	12/10/21	0171
=PM - ENVID/Form COC 02	ranga2		· · ·			、 、 、) , , , , , , , , , , , , , , , , , , ,	1 444 -	1	•

Envirolab Services Pty Ltd ABN 37 112 535 645 12 Ashley St Chatswood NSW 2067 ph 02 9910 6200 fax 02 9910 6201 customerservice@envirolab.com.au www.envirolab.com.au

CERTIFICATE OF ANALYSIS 254343

Client Details	
Client	Douglas Partners Pty Ltd
Attention	Chamali Nagodavithane
Address	96 Hermitage Rd, West Ryde, NSW, 2114

Sample Details	
Your Reference	<u>104136.00. Wyee</u>
Number of Samples	12 soil
Date samples received	27/10/2020
Date completed instructions received	27/10/2020

Analysis Details

Please refer to the following pages for results, methodology summary and quality control data.

Samples were analysed as received from the client. Results relate specifically to the samples as received.

Results are reported on a dry weight basis for solids and on an as received basis for other matrices.

Please refer to the last page of this report for any comments relating to the results.

Report Details

Date results requested by Date of Issue

03/11/2020

NATA Accreditation Number 2901. This document shall not be reproduced except in full.

Accredited for compliance with ISO/IEC 17025 - Testing. Tests not covered by NATA are denoted with *

Asbestos Approved By

Analysed by Asbestos Approved Identifier: Lucy Zhu Authorised by Asbestos Approved Signatory: Lucy Zhu

Results Approved By

Dragana Tomas, Senior Chemist Hannah Nguyen, Senior Chemist Josh Williams, Senior Chemist Lucy Zhu, Asbestos Supervisor Manju Dewendrage, Chemist Priya Samarawickrama, Senior Chemist Authorised By

Nancy Zhang, Laboratory Manager

vTRH(C6-C10)/BTEXN in Soil						
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
TRH C6 - C9	mg/kg	<25	<25	<25	<25	<25
TRH C6 - C10	mg/kg	<25	<25	<25	<25	<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg	<25	<25	<25	<25	<25
Benzene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Toluene	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Ethylbenzene	mg/kg	<1	<1	<1	<1	<1
m+p-xylene	mg/kg	<2	<2	<2	<2	<2
o-Xylene	mg/kg	<1	<1	<1	<1	<1
naphthalene	mg/kg	<1	<1	<1	<1	<1
Total +ve Xylenes	mg/kg	<3	<3	<3	<3	<3
Surrogate aaa-Trifluorotoluene	%	115	98	131	121	129
vTRH(C6-C10)/BTEXN in Soil						
vTRH(C6-C10)/BTEXN in Soil Our Reference		254343-6	254343-7	254343-8	254343-9	254343-10
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference	UNITS	254343-6 6	254343-7 7	254343-8 8	254343-9 QA1	254343-10 TB
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth	UNITS	254343-6 6 0-0.1	254343-7 7 0.4-0.5	254343-8 8 0.5-0.6	254343-9 QA1 -	254343-10 TB -
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled	UNITS	254343-6 6 0-0.1 22/10/2020	254343-7 7 0.4-0.5 22/10/2020	254343-8 8 0.5-0.6 22/10/2020	254343-9 QA1 - 22/10/2020	254343-10 TB - 22/10/2020
vTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	254343-6 6 0-0.1 22/10/2020 soil	254343-7 7 0.4-0.5 22/10/2020 soil	254343-8 8 0.5-0.6 22/10/2020 soil	254343-9 QA1 - 22/10/2020 soil	254343-10 TB - 22/10/2020 soil
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted	UNITS -	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020	254343-9 QA1 - 22/10/2020 soil 28/10/2020	254343-10 TB - 22/10/2020 soil 28/10/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed	UNITS - -	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9	UNITS - - mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C ₆ - C ₉ TRH C ₆ - C ₁₀	UNITS - mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25
VTRH(C6-C10)/BTEXN in Soil Our Reference Your Reference Depth Date Sampled Type of sample Date extracted Date analysed TRH C6 - C9 TRH C6 - C10 VTPH C6 - C10 less BTEX (F1)	UNITS - mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)Benzene	UNITS - - mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <0.2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ vTPH $C_6 - C_{10}$ less BTEX (F1)BenzeneToluene	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <25 <0.2	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <0.2 <0.2 <0.5
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 29/10/2020 29/10/2020 20/10/
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <1 <2	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 29/10/2020 <25 <25 <25 <25 <25 <25 <25 <25 <25 <25	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 29/10/2020 29/10/2020 29/10/2020 20/10/
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH C6 - C9TRH C6 - C10vTPH C6 - C10 less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-Xylenenaphthalene	UNITS - - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <1	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.5 <1 <1 <2 <1 <1 <2 <1 <1	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <1 <1
VTRH(C6-C10)/BTEXN in SoilOur ReferenceYour ReferenceDepthDate SampledType of sampleDate extractedDate analysedTRH $C_6 - C_9$ TRH $C_6 - C_{10}$ less BTEX (F1)BenzeneTolueneEthylbenzenem+p-xyleneo-XylenenaphthaleneTotal +ve Xylenes	UNITS - mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <1 <2 <1 <2 <1 <3	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020 <25 <25 <25 <25 <0.2 <0.2 <0.2 <0.5 <1 <2 <1 <2 <1 <3	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020 29/10/2020 29/10/2020 29/10/2020 202 202 202 202 202 202 202 202 2	254343-10 TB - 22/10/2020 soil 28/10/2020 29/10/2020 29/10/2020 (25)

vTRH(C6-C10)/BTEXN in Soil			
Our Reference		254343-11	254343-12
Your Reference	UNITS	TS	8
Depth		-	0.9-1.0
Date Sampled		22/10/2020	22/10/2020
Type of sample		soil	soil
Date extracted	-	28/10/2020	28/10/2020
Date analysed	-	29/10/2020	29/10/2020
TRH C ₆ - C ₉	mg/kg		<25
TRH C ₆ - C ₁₀	mg/kg		<25
vTPH C ₆ - C ₁₀ less BTEX (F1)	mg/kg		<25
Benzene	mg/kg	73%	<0.2
Toluene	mg/kg	73%	<0.5
Ethylbenzene	mg/kg	75%	<1
m+p-xylene	mg/kg	72%	<2
o-Xylene	mg/kg	70%	<1
naphthalene	mg/kg		<1
Total +ve Xylenes	mg/kg		<3
Surrogate aaa-Trifluorotoluene	%	117	125

svTRH (C10-C40) in Soil						
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C10 -C16	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	76	79	79	76	75
svTRH (C10-C40) in Soil		• •				
Our Reference		254343-6	254343-7	254343-8	254343-9	254343-12
Your Reference	UNITS	6	7	8	QA1	8
Depth		0-0.1	0.4-0.5	0.5-0.6	-	0.9-1.0

Depth		0-0.1	0.4-0.5	0.5-0.6	-	0.9-1.0
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
TRH C ₁₀ - C ₁₄	mg/kg	<50	<50	<50	<50	<50
TRH C ₁₅ - C ₂₈	mg/kg	<100	<100	<100	<100	<100
TRH C ₂₉ - C ₃₆	mg/kg	<100	<100	<100	<100	<100
TRH >C ₁₀ -C ₁₆	mg/kg	<50	<50	<50	<50	<50
TRH >C10 - C16 less Naphthalene (F2)	mg/kg	<50	<50	<50	<50	<50
TRH >C ₁₆ -C ₃₄	mg/kg	<100	<100	<100	<100	<100
TRH >C ₃₄ -C ₄₀	mg/kg	<100	<100	<100	<100	<100
Total +ve TRH (>C10-C40)	mg/kg	<50	<50	<50	<50	<50
Surrogate o-Terphenyl	%	77	74	72	70	76

PAHs in Soil						
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	90	88	86	89	88

PAHs in Soil						
Our Reference		254343-6	254343-7	254343-8	254343-9	254343-12
Your Reference	UNITS	6	7	8	QA1	8
Depth		0-0.1	0.4-0.5	0.5-0.6	-	0.9-1.0
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Naphthalene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Acenaphthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluorene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Phenanthrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fluoranthene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(a)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chrysene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(b,j+k)fluoranthene	mg/kg	<0.2	<0.2	<0.2	<0.2	<0.2
Benzo(a)pyrene	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Indeno(1,2,3-c,d)pyrene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dibenzo(a,h)anthracene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Benzo(g,h,i)perylene	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve PAH's	mg/kg	<0.05	<0.05	<0.05	<0.05	<0.05
Benzo(a)pyrene TEQ calc (zero)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(half)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a)pyrene TEQ calc(PQL)	mg/kg	<0.5	<0.5	<0.5	<0.5	<0.5
Surrogate p-Terphenyl-d14	%	87	88	92	92	92
Organochlorine Pesticides in soil						
-----------------------------------	-------	------------	------------	------------	------------	------------
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
нсв	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	88	90	87	89

Organochlorine Pesticides in soil				
Our Reference		254343-6	254343-8	254343-9
Your Reference	UNITS	6	8	QA1
Depth		0-0.1	0.5-0.6	-
Date Sampled		22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020
alpha-BHC	mg/kg	<0.1	<0.1	<0.1
НСВ	mg/kg	<0.1	<0.1	<0.1
beta-BHC	mg/kg	<0.1	<0.1	<0.1
gamma-BHC	mg/kg	<0.1	<0.1	<0.1
Heptachlor	mg/kg	<0.1	<0.1	<0.1
delta-BHC	mg/kg	<0.1	<0.1	<0.1
Aldrin	mg/kg	<0.1	<0.1	<0.1
Heptachlor Epoxide	mg/kg	<0.1	<0.1	<0.1
gamma-Chlordane	mg/kg	<0.1	<0.1	<0.1
alpha-chlordane	mg/kg	<0.1	<0.1	<0.1
Endosulfan I	mg/kg	<0.1	<0.1	<0.1
pp-DDE	mg/kg	<0.1	<0.1	<0.1
Dieldrin	mg/kg	<0.1	<0.1	<0.1
Endrin	mg/kg	<0.1	<0.1	<0.1
Endosulfan II	mg/kg	<0.1	<0.1	<0.1
pp-DDD	mg/kg	<0.1	<0.1	<0.1
Endrin Aldehyde	mg/kg	<0.1	<0.1	<0.1
pp-DDT	mg/kg	<0.1	<0.1	<0.1
Endosulfan Sulphate	mg/kg	<0.1	<0.1	<0.1
Methoxychlor	mg/kg	<0.1	<0.1	<0.1
Total +ve DDT+DDD+DDE	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	88	93	91

Organophosphorus Pesticides in Soil						
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	88	90	87	89

Organophosphorus Pesticides in Soil				
Our Reference		254343-6	254343-8	254343-9
Your Reference	UNITS	6	8	QA1
Depth		0-0.1	0.5-0.6	-
Date Sampled		22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020
Dichlorvos	mg/kg	<0.1	<0.1	<0.1
Dimethoate	mg/kg	<0.1	<0.1	<0.1
Diazinon	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos-methyl	mg/kg	<0.1	<0.1	<0.1
Ronnel	mg/kg	<0.1	<0.1	<0.1
Fenitrothion	mg/kg	<0.1	<0.1	<0.1
Malathion	mg/kg	<0.1	<0.1	<0.1
Chlorpyriphos	mg/kg	<0.1	<0.1	<0.1
Parathion	mg/kg	<0.1	<0.1	<0.1
Bromophos-ethyl	mg/kg	<0.1	<0.1	<0.1
Ethion	mg/kg	<0.1	<0.1	<0.1
Azinphos-methyl (Guthion)	mg/kg	<0.1	<0.1	<0.1
Surrogate TCMX	%	88	93	91

PCBs in Soil					
Our Reference		254343-5	254343-6	254343-8	254343-9
Your Reference	UNITS	5	6	8	QA1
Depth		0.4-0.5	0-0.1	0.5-0.6	-
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil
Date extracted	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Aroclor 1016	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1221	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1232	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1242	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1248	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1254	mg/kg	<0.1	<0.1	<0.1	<0.1
Aroclor 1260	mg/kg	<0.1	<0.1	<0.1	<0.1
Total +ve PCBs (1016-1260)	mg/kg	<0.1	<0.1	<0.1	<0.1
Surrogate TCMX	%	89	88	93	91

Acid Extractable metals in soil						
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Arsenic	mg/kg	<4	<4	<4	<4	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	2	4	4	4	7
Copper	mg/kg	3	7	5	14	<1
Lead	mg/kg	3	6	8	12	7
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	<1	1	<1
Zinc	mg/kg	14	25	21	69	5

Acid Extractable metals in soil						
Our Reference		254343-6	254343-7	254343-8	254343-9	254343-12
Your Reference	UNITS	6	7	8	QA1	8
Depth		0-0.1	0.4-0.5	0.5-0.6	-	0.9-1.0
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Arsenic	mg/kg	<4	<4	<4	5	<4
Cadmium	mg/kg	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium	mg/kg	5	21	6	5	2
Copper	mg/kg	<1	<1	1	3	<1
Lead	mg/kg	4	10	6	6	3
Mercury	mg/kg	<0.1	<0.1	<0.1	<0.1	<0.1
Nickel	mg/kg	<1	<1	3	1	<1
Zinc	mg/kg	5	10	110	19	5

Moisture						
Our Reference		254343-1	254343-2	254343-3	254343-4	254343-5
Your Reference	UNITS	1	2	3	4	5
Depth		0-0.1	0-0.12	0-0.1	0-0.1	0.4-0.5
Date Sampled		22/10/2020	22/10/2020	22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil	soil	soil
Date prepared	-	28/10/2020	28/10/2020	28/10/2020	28/10/2020	28/10/2020
Date analysed	-	29/10/2020	29/10/2020	29/10/2020	29/10/2020	29/10/2020
Moisture	%	9.2	14	8.8	18	24
Moisture						
Moisture Our Reference		254343-6	254343-7	254343-8	254343-9	254343-12
Moisture Our Reference Your Reference	UNITS	254343-6 6	254343-7 7	254343-8 8	254343-9 QA1	254343-12 8
Moisture Our Reference Your Reference Depth	UNITS	254343-6 6 0-0.1	254343-7 7 0.4-0.5	254343-8 8 0.5-0.6	254343-9 QA1 -	254343-12 8 0.9-1.0
Moisture Our Reference Your Reference Depth Date Sampled	UNITS	254343-6 6 0-0.1 22/10/2020	254343-7 7 0.4-0.5 22/10/2020	254343-8 8 0.5-0.6 22/10/2020	254343-9 QA1 - 22/10/2020	254343-12 8 0.9-1.0 22/10/2020
Moisture Our Reference Your Reference Depth Date Sampled Type of sample	UNITS	254343-6 6 0-0.1 22/10/2020 soil	254343-7 7 0.4-0.5 22/10/2020 soil	254343-8 8 0.5-0.6 22/10/2020 soil	254343-9 QA1 - 22/10/2020 soil	254343-12 8 0.9-1.0 22/10/2020 soil
Moisture Our Reference Your Reference Depth Date Sampled Type of sample Date prepared	UNITS -	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020	254343-9 QA1 - 22/10/2020 soil 28/10/2020	254343-12 8 0.9-1.0 22/10/2020 soil 28/10/2020
Moisture Our Reference Your Reference Depth Date Sampled Type of sample Date prepared Date analysed	UNITS - -	254343-6 6 0-0.1 22/10/2020 soil 28/10/2020 29/10/2020	254343-7 7 0.4-0.5 22/10/2020 soil 28/10/2020 29/10/2020	254343-8 8 0.5-0.6 22/10/2020 soil 28/10/2020 29/10/2020	254343-9 QA1 - 22/10/2020 soil 28/10/2020 29/10/2020	254343-12 8 0.9-1.0 22/10/2020 soil 28/10/2020 29/10/2020

Asbestos ID - soils				
Our Reference		254343-5	254343-6	254343-8
Your Reference	UNITS	5	6	8
Depth		0.4-0.5	0-0.1	0.5-0.6
Date Sampled		22/10/2020	22/10/2020	22/10/2020
Type of sample		soil	soil	soil
Date analysed	-	30/10/2020	30/10/2020	30/10/2020
Sample mass tested	g	Approx. 15g	Approx. 30g	Approx. 15g
Sample Description	-	Grey coarse- grained soil & rocks	Grey coarse- grained soil & rocks	Brown coarse- grained soil & rocks
Asbestos ID in soil	-	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres	No asbestos detected at reporting limit of 0.1g/kg Organic fibres
		detected	detected	detected
Asbestos comments	-	NO	NO	NO
Trace Analysis	-	No asbestos detected	No asbestos detected	No asbestos detected

Misc Inorg - Soil			
Our Reference		254343-4	254343-12
Your Reference	UNITS	4	8
Depth		0-0.1	0.9-1.0
Date Sampled		22/10/2020	22/10/2020
Type of sample		soil	soil
Date prepared	-	29/10/2020	29/10/2020
Date analysed	-	29/10/2020	29/10/2020
pH 1:5 soil:water	pH Units	6.4	7.9

CEC			
Our Reference		254343-4	254343-12
Your Reference	UNITS	4	8
Depth		0-0.1	0.9-1.0
Date Sampled		22/10/2020	22/10/2020
Type of sample		soil	soil
Date prepared	-	30/10/2020	30/10/2020
Date analysed	-	30/10/2020	30/10/2020
Exchangeable Ca	meq/100g	6.9	1.4
Exchangeable K	meq/100g	0.3	<0.1
Exchangeable Mg	meq/100g	1.9	<0.1
Exchangeable Na	meq/100g	<0.1	<0.1
Cation Exchange Capacity	meq/100g	9.1	1.5

Method ID	Methodology Summary
ASB-001	Asbestos ID - Qualitative identification of asbestos in bulk samples using Polarised Light Microscopy and Dispersion Staining Techniques including Synthetic Mineral Fibre and Organic Fibre as per Australian Standard 4964-2004.
Inorg-001	pH - Measured using pH meter and electrode in accordance with APHA latest edition, 4500-H+. Please note that the results for water analyses are indicative only, as analysis outside of the APHA storage times.
Inorg-008	Moisture content determined by heating at 105+/-5 °C for a minimum of 12 hours.
Metals-020	Determination of various metals by ICP-AES.
Metals-020	Determination of exchangeable cations and cation exchange capacity in soils using 1M Ammonium Chloride exchange and ICP-AES analytical finish.
Metals-021	Determination of Mercury by Cold Vapour AAS.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID. F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
Org-020	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-FID.
	F2 = (>C10-C16)-Naphthalene as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater (HSLs Tables 1A (3, 4)). Note Naphthalene is determined from the VOC analysis.
	Note, the Total +ve TRH PQL is reflective of the lowest individual PQL and is therefore "Total +ve TRH" is simply a sum of the positive individual TRH fractions (>C10-C40).
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD.
Org-021	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-ECD. Note, the Total +ve PCBs PQL is reflective of the lowest individual PQL and is therefore" Total +ve PCBs" is simply a sum of the positive individual PCBs.
Org-022	Determination of VOCs sampled onto coconut shell charcoal sorbent tubes, that can be desorbed using carbon disulphide, and analysed by GC-MS.
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS/GC-MSMS.
Org-022/025	Soil samples are extracted with dichloromethane/acetone and waters with dichloromethane and analysed by GC-MS/GC-MSMS.
	Note, the Total +ve reported DDD+DDE+DDT PQL is reflective of the lowest individual PQL and is therefore simply a sum of the positive individually report DDD+DDE+DDT.

Method ID	Methodology Summary
Org-022/025	Soil samples are extracted with Dichloromethane/Acetone and waters with Dichloromethane and analysed by GC-MS and/or GC-MS/MS. Benzo(a)pyrene TEQ as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater - 2013. For soil results:- 1. 'EQ PQL'values are assuming all contributing PAHs reported as <pql actually="" and="" approach="" are="" at="" be="" calculation="" can="" conservative="" contribute="" false="" give="" given="" is="" may="" most="" not="" pahs="" positive="" pql.="" present.<br="" teq="" teqs="" that="" the="" this="" to="">2. 'EQ zero'values are assuming all contributing PAHs reported as <pql and="" approach="" are="" below="" but="" calculation="" conservative="" contribute="" false="" is="" least="" more="" negative="" pahs="" pql.<br="" present="" susceptible="" teq="" teqs="" that="" the="" this="" to="" when="" zero.="">3. 'EQ half PQL'values are assuming all contributing PAHs reported as <pql a="" above.<br="" and="" approaches="" are="" between="" conservative="" half="" hence="" least="" mid-point="" most="" pql.="" stipulated="" the="">Note, the Total +ve PAHs PQL is reflective of the lowest individual PQL and is therefore "Total +ve PAHs" is simply a sum of</pql></pql></pql>
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater.
Org-023	Soil samples are extracted with methanol and spiked into water prior to analysing by purge and trap GC-MS. Water samples are analysed directly by purge and trap GC-MS. F1 = (C6-C10)-BTEX as per NEPM B1 Guideline on Investigation Levels for Soil and Groundwater. Note, the Total +ve Xylene PQL is reflective of the lowest individual PQL and is therefore "Total +ve Xylenes" is simply a sum of the positive individual Xylenes.

QUALITY CONT	ROL: vTRH	(C6-C10)	/BTEXN in Soil			Du	plicate		Spike Recovery %	
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	254343-6
Date extracted	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Date analysed	-			29/10/2020	5	29/10/2020	29/10/2020		29/10/2020	29/10/2020
TRH C ₆ - C ₉	mg/kg	25	Org-023	<25	5	<25	<25	0	119	112
TRH C ₆ - C ₁₀	mg/kg	25	Org-023	<25	5	<25	<25	0	119	112
Benzene	mg/kg	0.2	Org-023	<0.2	5	<0.2	<0.2	0	126	114
Toluene	mg/kg	0.5	Org-023	<0.5	5	<0.5	<0.5	0	121	112
Ethylbenzene	mg/kg	1	Org-023	<1	5	<1	<1	0	129	110
m+p-xylene	mg/kg	2	Org-023	<2	5	<2	<2	0	109	113
o-Xylene	mg/kg	1	Org-023	<1	5	<1	<1	0	108	112
naphthalene	mg/kg	1	Org-023	<1	5	<1	<1	0	[NT]	[NT]
Surrogate aaa-Trifluorotoluene	%		Org-023	130	5	129	107	19	127	128

QUALITY CO	NTROL: svT	RH (C10	-C40) in Soil			Du	plicate		Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-5	254343-6	
Date extracted	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020	
Date analysed	-			28/10/2020	5	29/10/2020	29/10/2020		28/10/2020	28/10/2020	
TRH C ₁₀ - C ₁₄	mg/kg	50	Org-020	<50	5	<50	<50	0	114	99	
TRH C ₁₅ - C ₂₈	mg/kg	100	Org-020	<100	5	<100	<100	0	96	81	
TRH C ₂₉ - C ₃₆	mg/kg	100	Org-020	<100	5	<100	<100	0	77	99	
TRH >C ₁₀ -C ₁₆	mg/kg	50	Org-020	<50	5	<50	<50	0	114	99	
TRH >C ₁₆ -C ₃₄	mg/kg	100	Org-020	<100	5	<100	<100	0	96	81	
TRH >C ₃₄ -C ₄₀	mg/kg	100	Org-020	<100	5	<100	<100	0	77	99	
Surrogate o-Terphenyl	%		Org-020	72	5	75	78	4	81	90	

QUALIT	Y CONTRC	L: PAHs	in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	254343-6
Date extracted	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Date analysed	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Naphthalene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	97	95
Acenaphthylene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Acenaphthene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	104	103
Fluorene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	100	95
Phenanthrene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	111	111
Anthracene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Fluoranthene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	107	109
Pyrene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	109	113
Benzo(a)anthracene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Chrysene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	116	112
Benzo(b,j+k)fluoranthene	mg/kg	0.2	Org-022/025	<0.2	5	<0.2	<0.2	0	[NT]	[NT]
Benzo(a)pyrene	mg/kg	0.05	Org-022/025	<0.05	5	<0.05	<0.05	0	90	93
Indeno(1,2,3-c,d)pyrene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Dibenzo(a,h)anthracene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Benzo(g,h,i)perylene	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Surrogate p-Terphenyl-d14	%		Org-022/025	85	5	88	91	3	82	83

QUALITY CONTR	OL: Organo	chlorine F	Pesticides in soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	254343-6
Date extracted	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Date analysed	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
alpha-BHC	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	94	94
НСВ	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
beta-BHC	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	100	92
gamma-BHC	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Heptachlor	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	113	99
delta-BHC	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Aldrin	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	103	110
Heptachlor Epoxide	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	101	107
gamma-Chlordane	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
alpha-chlordane	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Endosulfan I	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
pp-DDE	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	101	104
Dieldrin	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	97	103
Endrin	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	77	111
Endosulfan II	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
pp-DDD	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	79	83
Endrin Aldehyde	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
pp-DDT	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Endosulfan Sulphate	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	84	86
Methoxychlor	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	92	5	89	90	1	86	83

QUALITY CONTRO	L: Organoph	nosphorus	s Pesticides in Soil			Du	plicate		Spike Re	covery %
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	254343-6
Date extracted	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Date analysed	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Dichlorvos	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	78	104
Dimethoate	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Diazinon	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Chlorpyriphos-methyl	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Ronnel	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	96	98
Fenitrothion	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	81	83
Malathion	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	80	100
Chlorpyriphos	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	93	99
Parathion	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	82	90
Bromophos-ethyl	mg/kg	0.1	Org-022	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Ethion	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	89	101
Azinphos-methyl (Guthion)	mg/kg	0.1	Org-022/025	<0.1	5	<0.1	<0.1	0	[NT]	[NT]
Surrogate TCMX	%		Org-022/025	92	5	89	90	1	86	83

QUALIT	QUALITY CONTROL: PCBs in Soil								Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	254343-6	
Date extracted	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020	
Date analysed	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020	
Aroclor 1016	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1221	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1232	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1242	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1248	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	[NT]	[NT]	
Aroclor 1254	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	100	100	
Aroclor 1260	mg/kg	0.1	Org-021	<0.1	5	<0.1	<0.1	0	[NT]	[NT]	
Surrogate TCMX	%		Org-021	92	5	89	90	1	86	83	

QUALITY CONT	ROL: Acid E	xtractable	e metals in soil			Du	Spike Re	Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	254343-6
Date prepared	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Date analysed	-			28/10/2020	5	28/10/2020	28/10/2020		28/10/2020	28/10/2020
Arsenic	mg/kg	4	Metals-020	<4	5	<4	<4	0	104	78
Cadmium	mg/kg	0.4	Metals-020	<0.4	5	<0.4	<0.4	0	108	84
Chromium	mg/kg	1	Metals-020	<1	5	7	6	15	99	83
Copper	mg/kg	1	Metals-020	<1	5	<1	<1	0	115	85
Lead	mg/kg	1	Metals-020	<1	5	7	5	33	111	80
Mercury	mg/kg	0.1	Metals-021	<0.1	5	<0.1	<0.1	0	90	78
Nickel	mg/kg	1	Metals-020	<1	5	<1	<1	0	98	75
Zinc	mg/kg	1	Metals-020	<1	5	5	5	0	108	81

QUALITY	Duplicate				Spike Recovery %					
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-6	[NT]
Date prepared	-			29/10/2020	[NT]		[NT]	[NT]	29/10/2020	[NT]
Date analysed	-			29/10/2020	[NT]		[NT]	[NT]	29/10/2020	[NT]
pH 1:5 soil:water	pH Units		Inorg-001	[NT]	[NT]	[NT]	[NT]	[NT]	101	[NT]

QU.	ALITY CONT	EC		Duplicate					Spike Recovery %		
Test Description	Units	PQL	Method	Blank	#	Base	Dup.	RPD	LCS-1	[NT]	
Date prepared	-			30/10/2020	[NT]		[NT]	[NT]	30/10/2020		
Date analysed	-			30/10/2020	[NT]		[NT]	[NT]	30/10/2020		
Exchangeable Ca	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	109		
Exchangeable K	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	110		
Exchangeable Mg	meq/100g	0.1	Metals-020	<0.1	[NT]		[NT]	[NT]	111		
Exchangeable Na	meq/100g	0.1	Metals-020	<0.1	[NT]	[NT]	[NT]	[NT]	108	[NT]	

Result Definiti	ons
NT	Not tested
NA	Test not required
INS	Insufficient sample for this test
PQL	Practical Quantitation Limit
<	Less than
>	Greater than
RPD	Relative Percent Difference
LCS	Laboratory Control Sample
NS	Not specified
NEPM	National Environmental Protection Measure
NR	Not Reported

Quality Control	ol Definitions
Blank	This is the component of the analytical signal which is not derived from the sample but from reagents, glassware etc, can be determined by processing solvents and reagents in exactly the same manner as for samples.
Duplicate	This is the complete duplicate analysis of a sample from the process batch. If possible, the sample selected should be one where the analyte concentration is easily measurable.
Matrix Spike	A portion of the sample is spiked with a known concentration of target analyte. The purpose of the matrix spike is to monitor the performance of the analytical method used and to determine whether matrix interferences exist.
LCS (Laboratory Control Sample)	This comprises either a standard reference material or a control matrix (such as a blank sand or water) fortified with analytes representative of the analyte class. It is simply a check sample.
Surrogate Spike	Surrogates are known additions to each sample, blank, matrix spike and LCS in a batch, of compounds which are similar to the analyte of interest, however are not expected to be found in real samples.

Australian Drinking Water Guidelines recommend that Thermotolerant Coliform, Faecal Enterococci, & E.Coli levels are less than 1cfu/100mL. The recommended maximums are taken from "Australian Drinking Water Guidelines", published by NHMRC & ARMC 2011.

The recommended maximums for analytes in urine are taken from "2018 TLVs and BEIs", as published by ACGIH (where available). Limit provided for Nickel is a precautionary guideline as per Position Paper prepared by AIOH Exposure Standards Committee, 2016.

Guideline limits for Rinse Water Quality reported as per analytical requirements and specifications of AS 4187, Amdt 2 2019, Table 7.2

Laboratory Acceptance Criteria

Duplicate sample and matrix spike recoveries may not be reported on smaller jobs, however, were analysed at a frequency to meet or exceed NEPM requirements. All samples are tested in batches of 20. The duplicate sample RPD and matrix spike recoveries for the batch were within the laboratory acceptance criteria.

Filters, swabs, wipes, tubes and badges will not have duplicate data as the whole sample is generally extracted during sample extraction.

Spikes for Physical and Aggregate Tests are not applicable.

For VOCs in water samples, three vials are required for duplicate or spike analysis.

Duplicates: >10xPQL - RPD acceptance criteria will vary depending on the analytes and the analytical techniques but is typically in the range 20%-50% – see ELN-P05 QA/QC tables for details; <10xPQL - RPD are higher as the results approach PQL and the estimated measurement uncertainty will statistically increase.

Matrix Spikes, LCS and Surrogate recoveries: Generally 70-130% for inorganics/metals (not SPOCAS); 60-140% for organics/SPOCAS (+/-50% surrogates) and 10-140% for labile SVOCs (including labile surrogates), ultra trace organics and speciated phenols is acceptable.

In circumstances where no duplicate and/or sample spike has been reported at 1 in 10 and/or 1 in 20 samples respectively, the sample volume submitted was insufficient in order to satisfy laboratory QA/QC protocols.

When samples are received where certain analytes are outside of recommended technical holding times (THTs), the analysis has proceeded. Where analytes are on the verge of breaching THTs, every effort will be made to analyse within the THT or as soon as practicable.

Where sampling dates are not provided, Envirolab are not in a position to comment on the validity of the analysis where recommended technical holding times may have been breached.

Measurement Uncertainty estimates are available for most tests upon request.

Analysis of aqueous samples typically involves the extraction/digestion and/or analysis of the liquid phase only (i.e. NOT any settled sediment phase but inclusive of suspended particles if present), unless stipulated on the Envirolab COC and/or by correspondence. Notable exceptions include certain Physical Tests (pH/EC/BOD/COD/Apparent Colour etc.), Solids testing, total recoverable metals and PFAS where solids are included by default.

Samples for Microbiological analysis (not Amoeba forms) received outside of the 2-8°C temperature range do not meet the ideal cooling conditions as stated in AS2031-2012.

Report Comments

Asbestos: A portion of the supplied samples were sub-sampled for asbestos

analysis according to Envirolab procedures. We cannot guarantee that these sub-samples are indicative of the entire sample.

Envirolab recommends supplying 40-50g of sample in its own container. Note: Samples 254343-5,6,8 were sub-sampled from jars provided by the client.

CHAIN OF CUSTODY DESPATCH SHEET

Project No:	10413	36.00			Suburb: Wyee					To: Envirolab Services Sydney					
Project Name:	ne: Wyee					Order Number									
Project Manager	Sampler: CLN					Attn: Aileen Hie									
Emails:	<u>cham</u>	ali.n@dou						Phone:							
Date Required:	Same	day 🗆 🔤	ours 72 hours Standard					Email:ahie@envirolab.com.au							
Prior Storage:	🗆 Esky	🛛 🛛 🖄 🖓 🖄	e 🗆 Sh	elved	Do sample	es contain	'potential'	HBM?	Yes 🗆	No 🗆 (If	YES, then	handle, trar	sport and s	tore in accordance with FPM HAZID)	
		oled	Sample Type	Container Type	Analytes										
Sample ID	Lab ID	Date Samp	S - soil W - water	G - glass P - plastic	Combo 6a	Combo 5b	TRH and BTEXN	pH and CEC	Combo 6	втех	Combo 3		· ,	Notes/preservation	
1/0-0.1	1	22/10/20	S	G		x					<u>`</u>				
2/0=0=1	0-0-12	-22/10/20	S	G	``````````````````````````````````````	x					·.				
3/ 0-0.1	3	22/10/20	S	G		x									
4 / 0-0.1	4	22/10/20	S	G		x		x							
5 / 0.4- 0.5	2	22/10/20	S	G	x										
6 / 0 - 0.1	6	22/10/20	S	G	х					ļ	•			Enviroint Services	
7/ 0.4 - 0.5	7	22/10/20	S	G							X .			Chater Joc.! NSW 2067	
8 / 0.5 - 0.6	.8	22/10/20	S	G	x			·	; _	а 				bb No: 254343	
QA1	G	22/10/20	S	G					x	. I				pate 1 ceived 27/10/2020	
TB	10		S	G			x							Time Roceived: (0245	
TS			S	G						x				Timp: Occ/Ampient 12-3	
8 / 0.9 -1.0	12	22/10/20	S	G .				x		, ,	<u>x</u>			Ling:Tee/Icepagk	
					·							ļ			
PQL (S) mg/kg													CC PQLs	req'd for all water analytes 🛛	
PQL = practical	quantit	ation limit.	If none g	iven, default	to Labora	tory Meth	od Detec	tion Limit	<u> </u>	Lab Report/Reference No: ってしろしえ					
Metals to Analys	se: 8HM	unless sp	ecified ne	re: Reli	nguished	by:		Transpo	orted to I	aboratorv	by:				
Send Results to	; D	ouglas Part	ners Ptv L	td Add	ress	~	Ł					Phone	:	Fax:	
Signed: 11 mmelt No Received by: Mina Yan To Date & Time: 27(10/2920 10												222 10:45			
()						5								12-3°Ci	

.

·--- *: